Evaluation of CO-EOR Performance and Storage Mechanisms in an Active Partially Depleted Oil Reservoir

Kutsienyo, Eusebius Junior (Petroleum Recovery Research Center) | Ampomah, William (Petroleum Recovery Research Center) | Sun, Qian (Petroleum Recovery Research Center) | Balch, Robert Scott (Petroleum Recovery Research Center) | You, Junyu (Petroleum Recovery Research Center) | Aggrey, Wilberforce Nkrumah (KNUST) | Cather, Martha (Petroleum Recovery Research Center)

OnePetro 

Abstract

This paper presents field-scale numerical simulations of CO2 injection activities in the Pennsylvanian Upper Morrow sandstone reservoir, usually termed the Morrow B sandstone, in the Farnsworth Unit (FWU) of Ochiltree County, Texas. The CO2 sequestration mechanisms examined in the study include structural-stratigraphic, residual, solubility and mineral trapping. The reactive transport modelling incorporated in the study evaluates the field's potential for long-term CO2 sequestration and predicts the CO2 injection effects on the Morrow B pore fluid composition, mineralogy, porosity, and permeability.

The dynamic CO2 sequestration model was built from an upscaled geocellular model for the Morrow B. This model incorporated geological, geophysical, and engineering data including well logs, core, 3D surface seismic and fluid analysis. We calibrated the model with active CO2-WAG miscible flood data by adjusting control parameters such as reservoir rock properties and Corey exponents to incorporate potential changes in wettability. The history-matched model was then used to evaluate the feasibility and mechanisms for CO2 sequestration. We used the maximum residual phase saturations to estimate the effect of gas trapped due to hysteresis. The coupled approach which involves the aqueous phase solubility and geochemical reactions were modelled prior to import into the compositional simulation model. The viscosities of the liquid-vapor phases were modeled based on the Jossi-Stiel-Thodos Correlation. This correlation depended on the mixture density calculated by the equation of state. The gas solubility coefficients for the aqueous phase were estimated using Henry's law for various components as function of pressure, temperature, and salinity. The characteristic intra-aqueous and mineral dissolution/precipitation reactions were assimilated numerically as chemical equilibrium and rate-dependent reactions respectively. Multiple scenarios were performed to evaluate the effects and potentials of the CO2 sequestrated within the Morrow formation. Additional scenarios that involve shut-in of wells were performed and the reservoir monitored for over 150 years to understand possible dissolution/precipitation of minerals. Changes in permeability as a function of changes in porosity caused by mineral precipitation/dissolution were calibrated to the laboratory chemo-mechanical responses.

This confirms the CO2 injection in the morrow B will alter petrophysical properties, such as permeability and porosity in short-term due to the dissolution of calcite. However, further investigation for the long-term effects needs to be conducted. Moreover, the following significant observations are extracted from the result of this study: oil recovery, total volume of CO2 due to multiple trapping mechanisms, effect of salinity, the timescale-view of the dissolution/precipitation evolution in the Morrow B sandstone.

Experiences gained from this study offers valuable visions regarding physiochemical storage induced by the CO2 injection activities and may serve as a benchmark case for future CO2-EOR projects when reactive transportations are considered.