Laboratory Challenges of Sand Production in Unconsolidated Cores

Sanyal, Tirtharenu (Kuwait Oil Company) | Al-Hamad, Khairyah (KOC) | Jain, Anil Kumar (KOC) | Al-Haddad, Ali Abbas (KISR) | Kholosy, Sohib (KISR) | Ali, Mohammad A.J. (Kuwait Inst. Scientific Rsch.) | Abu Sennah, Heba Farag (Kuwait Oil Company)

OnePetro 

Improved oil recovery for heavy oil reservoirs is becoming a new research study for Kuwaiti reservoirs. There are two mechanisms for improved oil recovery by thermal methods. The first method is to heat the oil to higher temperatures, and thereby, decrease its viscosity for improved mobility. The second mechanism is similar to water flooding, in which oil is displaced to the production wells. While more steam is needed for this method than for the cyclic method, it is typically more effective at recovering a larger portion of the oil.

Steam injection heats up the oil and reduce its viscosity for better mobility and higher sweep efficiency. During this process, the velocity of the moving oil increases with lower viscosity oil; and thus, the heated zone around the injection well will have high velocity. The increase of velocity in an unconsolidated formation is usually accompanied with sand movement in the reservoir creating a potential problem.

The objective of this study was to understand the effect of flowrate and viscosity on sand production in heavy oil reservoir that is subjected for thermal recovery process. The results would be useful for designing completion under steam injection where the viscosity of the oil is expected to change due to thermal operations.

A total of 21 representative core samples were selected from different wells in Kuwait. A reservoir condition core flooding system was used to flow oil into the core plugs and to examine sand production. Initially, the baseline liquid permeability was measured with low viscosity oil and low flowrate. Then, the flowrate was increased gradually and monitored to establish the value for sand movement for each plug sample. At the end of the test, the produced oil containing sand was filtered for sand content.

The result showed that sand production increased with higher viscosity oil and high flowrate. However, sand compaction at the injection face of the cores was more significant than sand production. In addition, high confining pressure contributes to additional sand production. The average critical velocity was estimated ranged from 18 to 257 ft/day for the 0.74 cp oil, 2 to 121 ft/day for the 16 cp oil, and 1 to 26 ft/day for the 684 cp oil.