Alternate Imbalance Operating-Pressure Process Improving SAGD Performance of Foamy Extra-Heavy Oil Reservoirs in the Eastern Orinoco Belt, Venezuela

Yang, Zhaopeng (PetroChina Research Institute of Petroleum Exploration&Development) | Li, Xingmin (PetroChina Research Institute of Petroleum Exploration&Development) | Chen, Heping (PetroChina Research Institute of Petroleum Exploration&Development) | Liu, Zhangcong (PetroChina Research Institute of Petroleum Exploration&Development) | Luo, Yanyan (PetroChina Research Institute of Petroleum Exploration&Development) | Fang, Lichun (PetroChina Research Institute of Petroleum Exploration&Development)

OnePetro 

Abstract

The foamy extra-heavy oil reservoirs in the eastern Orinoco Belt, Venezuela with high initial dissolved gas oil ratio and flow ability in situ, have been exploited by the Cold Heavy Oil Production (CHOP) method, with recovery of only 8%-12% OOIP. SAGD has proved to be one of commercially active post-CHOP processes. Whereas during the SAGD process the dissolved gas as non-condensable gas accumulated at the edges of the steam chamber causes a resistance to heat transfer between steam and oil, thus slowing down growth of the steam chamber and oil recovery. Therefore a novel SAGD process using alternate imbalance operating-pressure (AIOP-SAGD) is studied for the purpose of improving foamy oil SAGD performance.

The novel SAGD process involves multi SAGD well pairs, and with the growth of steam chambers, a significant pressure gradient is deliberately created between two steam injection wells. Moreover the higher and lower operation pressure of the two injection wells is periodically alternate. In this work, the potential evaluation and optimization of foamy oil AIOP-SAGD are studied, through extensive simulations utilizing a sector model, which is from a sector with representative oil and reservoir characteristics of Eastern Orinoco Belt, considering the mechanism of foamy oil and thermal recovery.

Simulation results indicate that the AIOP-SAGD process shows significant improvement in oil recovery, at least 10% higher than traditional SAGD. The mechanism includes two aspects: firstly the pressure gradient between two adjacent SAGD well pairs brings a sweep of dissolved gas from steam chambers; secondly, based on the flow ability of foamy extra-heavy oil, the pressure gradient helps to exploit oil between two SAGD pairs which is typically difficult to be recovered with conventional SAGD. The optimization of operating parameters shows that the optimal start time of AIOP-SAGD is when the oil rate of SAGD reaches the peak and the steam chamber extends to the top of the reservoir. High steam quality helps improve the performance of AIOP-SAGD. Moreover the parameters of alternate time, imbalance time, imbalance pressure difference were optimized.