Exploiting Slim Pulsed Neutron Spectroscopy for Unlocking Reservoir Potential in Brownfields: Two Examples from Gulf of Suez Offshore Field in Egypt

Ameen, Mohamed (General Petroleum Company) | Atwa, Eslam (General Petroleum Company) | Youssif, Youssif (General Petroleum Company) | Hakim, Emad Abdel (General Petroleum Company) | Farouk, Mohamed (General Petroleum Company) | Ghadiry, Sherif (Schlumberger) | Saleh, Khaled (Schlumberger) | Morad, Aly (Schlumberger)

OnePetro 

Abstract For more than 40 years, pulsed neutron spectroscopy has been primarily used in reservoir management to determine hydrocarbon saturation profiles, tracking reservoir depletion, and planning workover activities to diagnose production problems such as water influx. Legacy pulsed neutron tools used to provide this information for more than four decades, but they were challenged when a mixed lithology reservoir is encountered, complex completions, unknown borehole conditions, and poor cement integrity in cased boreholes. This paper presents two successful field examples and applications using the advanced slim pulsed neutron spectroscopy to precisely determine multiphase contacts in a complex geological structure, provide current hydrocarbon saturation independent of the quality of cement behind the casing, and identifying bypassed hydrocarbon. This was of paramount importance in understanding current reservoir fluid distribution to reveal the true potential of this offshore brownfield located in the Gulf of Suez, Egypt. An integrated approach and candidate well selection were done that resulted in selecting two candidate wells that had poor cement quality behind casing, heterogeneous carbonate reservoir with mixed lithology, and uncertain fluid contacts in a complex reservoir structure. These combined borehole and reservoir conditions resemble challenges for capturing this crucial information with high confidence using the legacy pulsed neutron tool, and therefore required an advanced technology that can overcome these challenges using a single logging mode at twice the logging speed of any current pulsed neutron technology available in the industry. Based on the results, a workover campaign was implemented in this mature field to increase overall oil production with very efficient cost control, especially with this unprecedented time the O&G industry is going through. An integrated approach was set that resulted in the selection of two wells for the saturation determination logging tool deployment. Detailed high-resolution mineralogy, self-compensated total porosity and sigma, fluid type identification, and multiphase fluid saturation was obtained with high precision behind cased borehole independent of cement integrity and borehole fluid reinvasion. The results provided crucial information as an input to the integrated reservoir engineering approach which revealed around a 100-m net oil interval which was previously overlooked due to relatively low resistivity. Besides, fluids contacts were evaluated that confirmed the development of a secondary gas cap and the water encroachment direction. This technology can be further applied to more brownfields provided the right candidate selection is done to understand the potentiality of the field which would increase the recovery factor of the brownfields that represent almost more than 65% of the oil and gas fields around the world.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found