Application of 2D NMR for Formation Testing and Sampling in Heavy Oil Formations

Idris, Umar (Saudi Aramco) | Hursan, Gabor (Saudi Aramco) | Eyuboglu, Sami (Halliburton) | Eid, Mahmoud (Halliburton)



Timely and detailed evaluation of in-situ hydrocarbon flow properties such as oil density and viscosity is critical for successful development of heavy oil reservoirs. The prediction of fluid properties requires comprehensive integration of advanced downhole measurements such as nuclear magnetic resonance (NMR) logging, formation pressure, and mobility measurements, as well as fluid sampling.

The reservoir rock presented in this paper is an unconsolidated Miocene formation comprising complex lithologies including clastics and carbonates. The reservoir fluids are hydrocarbons with significant spatial variations in viscosity ranging from (60-300 cP) to fully solid (tar). Well testing and downhole fluid sampling in this formation are hindered by low oil mobility, unconsolidated formation that generates sand production, emulsion generation, and very low formation pressure.

We present a two-pronged log evaluation workflow to identify sweet spots and to predict fluid properties within the zones of interest. First, the presence of "missing NMR porosity" and "excess bound fluid" is estimated by comparing the NMR total and bound fluid porosity with the conventional total porosity and uninvaded water-filled porosity logs, respectively. Secondly, two-dimensional NMR diffusivity vs. T2 NMR analysis is performed in prospective zones where lighter and, possibly, producible hydrocarbons are detected. The separation of oil and water signals provides a resistivity-independent estimation of the shallow water saturation. Additionally, we correlated the position of the NMR oil signal with oil-sample viscosity values. The readily available log-based viscosity greatly improves the efficiency of the formation and well-testing job.

We successfully sampled high viscosity hydrocarbon fluids by utilizing either oval pad or straddle packer. The customized tool designed for sampling aided gravitational segregation of clean hydrocarbons from the water-based mud filtrate and emulsion; and therefore providing representative reservoir fluid samples based on downhole fluid analyzers.