An Efficient Approach to Diagnose and Improve 3D Reservoir Model Quality in a Highly Diagenetic Deterogeneous and Dynamic Pressure Carbonate Field Case Study

Susanto, Maria Indriaty (OMV) | Sellar, Christopher (OMV) | Contreras Perez, David (OMV)

OnePetro 

Abstract

This paper presents a diagnostic workflow to understand and implement rock and fluid modeling in a diagenetically heterogeneous and hydrodynamically pressured Middle East carbonate field. The workflow allows interactive field data integration, provides guidance for reservoir property distribution and fluid contact generation in order to improve reserves and forecasting estimation. The workflow is useful to a reservoir modeler in QA/QC role and in this case it proves particularly applicable in an organization with constrained resources during the farm-in process. The workflow runs on numerical methods within the static model to avoid database discrepancy during the diagnostic process. Using the core (CCAL, SCAL), log and pressure database, the geoscientist can assess subsurface modeling outputs from the simplest to more complex deterministic scenarios. The process aims to minimize the discrepancy between data input and model output while continuously honoring the data, maintaining realistic correlations (e.g. between static permeability and water saturation) and respecting inherent uncertainty.

Using a data-rich Middle East carbonate reservoir, the pre- and post-diagnostic comparison of 3D modeled reservoir properties to the input data are demonstrated. Diagnostic steps have helped to understand potential subsurface scenarios and thus minimize the discrepancy post exercise. The value of the workflow is its ability to pinpoint the key uncertainties in rock and fluid modeling from the field’s vast dataset in a shorter diagnostic time. The application of the workflow in this carbonate reservoir case study increases the importance of geological and property driven rock type classification and its 3D distribution in matching the water saturation profile. This proved particularly challenging in this case study due to the field’s compartmentalization - fluid contact scenario.