Snorre In-Depth Water Diversion - New Operational Concept for Large Scale Chemical Injection from a Shuttle Tanker

Skrettingland, K. (Statoil ASA) | Ulland, E. N. (Statoil ASA) | Ravndal, O. (Statoil ASA) | Tangen, M. (Statoil ASA) | Kristoffersen, J. B. (Statoil ASA) | Stenerud, V. R. (Statoil ASA) | Dalen, V. (Statoil ASA) | Standnes, D. C. (Statoil ASA) | Fevang, Ø. (Statoil ASA) | Mevik, K. M. (Knutsen Subsea Solutions) | McIntosh, N. (Knutsen Subsea Solutions) | Mebratu, A. (Halliburton) | Melien, I. (Halliburton) | Stavland, A. (Intl Research Inst of Stavanger)



Declining oil production and increasing water cut in mature fields highlight the need for improved conformance control. Here we report on a successful in-depth water diversion treatment using sodium silicate to increase oil recovery at the Snorre field, offshore Norway, utilizing a new operational concept of using a stimulation vessel as a platform for the large-scale injection into a subsea well. A custom modified 35,000 DWT shuttle tanker was employed for the field pilot. This paper describes the vessel preparations and the large-scale interwell silicate injection operation. The operational aspects of the large-scale interwell silicate injection include; identification of injection vessel requirements, major vessel modifications, chemical logistic, general logistics to site, major equipment set-up on vessel, subsea connection, mixing and pumping schedules, onsite QC, and real time monitoring. Experience from these operations and lessons learned are included in this paper.

After the injection of approximately 400,000 Sm3 (113,000 Sm3 preflush, followed by 240,000 Sm3 of sodium silicate gelant and 49,000 Sm3 of postflush fluid) at injection rates up to 4,000 Sm3/d, the injection from the vessel was stopped and the well was put on regular seawater injection. Following more than two years of regular production, transient pressure measurements, tracer testing and water cut data are presented from the ongoing comprehensive data acquisition program. These results demonstrate clearly the achieved in-depth flow diversion through a delayed breakthrough of injected tracers and lower water cut in the relevant production well.