Comparison of Mechanical Strength Prediction with Schmidt Hammer Rebound Value and Rebound Coefficient

Yasar, Serdar (Karadeniz Technical University) | Yilmaz, Ali Osman (Karadeniz Technical University)

OnePetro 

Abstract

Schmidt hammer is an instrument that is widely used in rock mechanics field. In Schmidt hammer tests, in general terms, surface hardness of rock specimens or rocks itself is measured. By means of this measurement, uniaxial compressive strength of the intact rock which is conducted to experiment can be determined indirectly. There are two types of Schmidt hammer. These are namely, L-type and N-type hammers. Basic difference between these hammers is the impact energy. A new measurement system was developed with new digital Schmidt hammers. In this measurement system, a new value is found which is called rebound coefficient and indexed as Q. In this study, classical and digital Schmidt hammers were used on seven different rock samples. Additionally, uniaxial compressive, uniaxial tesile and point load tests were conducted on same rock samples. A comparative study has been performed between R and Q parameters’ prediction ability on mechanical strength parameters.

1 Introduction

Schmidt hammer, also known as "Swiss Hammer", is a non-destructive testing method, which is firstly developed and patented by Ernst Schmidt in 1951 for determination of surface hardness of construction materials such as metal, concrete, artificial stone and, ceramic products (Schmidt 1951). Since 1960s, Schmidt hammers were used for rock mechanics field widely for various purposes (Deere & Miller 1966). General application areas of this method are geomorphological aspects such as exposure age estimation or weathering grade estimation (Awasthi et al. 2005), prediction of rock properties like uniaxial compressive strength, point load index and, elasticity modulus (Sachpazis 1990, Aggistalis et al. 1996, Kahraman 2001), prediction of cuttability, drillability, sawability, boreability and rock cutting machine performance (Tarkoy 1973, Poole & Farmer 1980, Bilgin et al. 2002 and Yasar et al. 2014). Apart from these purposes, this method can be used in miscellaneous area of usage as effect of fire on concrete’s surface hardness (Annerel & Taerwe 2011). Schmidt hammer is used for these aspects due to certain assets as below:

• Simplicity,

• Cost and time effective,

• Nondestructive,

• Portable.

Schmidt hammers can be separated in two types according to their impact energy that are L and N type hammers, and impact energies of these hammers are 0.735 and 2.207 Nm respectively. After impacts, surface hardness of sample is determined by rebound value, indexed as R. Since 2010, a new measurement system was introduced with digital Schmidt hammers that is called as rebound coefficient and indexed as Q.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
Influence of the Primary Stress State on the Disc Cutter Penetration1.000OnePetro
Finite Element Simulations of Twin Shallow Tunnels1.000OnePetro
Earthquake Induced Rockfall Along Cut Slopes - A Case Study from Luhri, Himachal Pradesh, India1.000OnePetro
Characterization of Basalt for Stability Assessment of an Abandoned Underground Mine in Mendig, Germany1.000OnePetro
Effect of Time and Wear on the Basic Friction Angle of Rock Discontinuities1.000OnePetro
Physical and Numerical Simulations of Super-Critical Subsidence as Affected by Opening Geometries and Depths1.000OnePetro
Petrographic, Physical and Mechanical Features of Sedimentary Rocks of the South Catarinense Coalfield, Brazil1.000OnePetro
Numerical Methods for the Design of Support Systems in a Deep Metalliferous Mine in Turkey1.000OnePetro
Compressive Strength Tests of Cabled Rock Specimens as Pillar Analogues1.000OnePetro
Application of Artificial Neural Networks in Estimation of Uniaxial Compressive Strength using Schmidt Hammer Rebound Number Data under Specific Geological Conditions1.000OnePetro
3D Geometrical Modeling of Folded Layers: A Case Study from Lead and Zinc Mine of Anjire, Isfahan, Iran1.000OnePetro
Real Time Stress Change Estimation using Strain Measurements1.000OnePetro
Influence of Constitutive Model Choice on Simulated Stress Path and Yield Evolution in Deep Mine Pillar Analysis – Experience from the Creighton Mine, Sudbury, Canada1.000OnePetro
Rock Mechanics Investigations in Connection with the Introduction of a New Pillar System in a Deep Magnesite Mine1.000OnePetro
An investigation of Shaft Wall Stability in Low-Strength Rock Mass Conditions at the Ust-Jaiwa Freeze Shaft Project1.000OnePetro
Simulation of Mining Impact on Water Resources1.000OnePetro
On the Development of a Slope Instability Index for Open-Pit Mines using an Improved Systems Approach1.000OnePetro
Statistical Calculation of Mean Stress Tensor using both Euclidean and Riemannian Approaches1.000OnePetro
Stability Analysis of Internal Dragline Dump: Distinct Modeling1.000OnePetro
Stability Analysis of Blocky Rock Slope Excavation Bbased on Site Non-Contact Measurement and GeoSMA-3D Modelling1.000OnePetro
Rock Soil Usage to Provide Buildings and Structures Stability in Term of Deep-Frozen Soil1.000OnePetro
Rock mechanical analysis of the underground complex in Tapiola Center, Espoo, Finland1.000OnePetro
Probabilistic Numerical Models using Monte Carlo and Point Estimate Methods1.000OnePetro
Modelling of Rock Bolts using the Finite Element Method1.000OnePetro
Mapping Rock Surface Roughness with Photogrammetry1.000OnePetro
Investigations on Telescope Yielding Elements with Porous Filling1.000OnePetro
Effect of Carbon Dioxide Sequestration on the Mechanical Properties of Indian Coal1.000OnePetro
Dynamic Pressures in a Plunge Pool of a Dam1.000OnePetro
Tunnel Face Stability Investigation by Means of 3D Numerical Analysis and Hand Calculations1.000OnePetro
Suggestion for a Documentation of Unexpected Standstills in TBM-Tunnelling1.000OnePetro
Clump Models: An Improvement in the Rock Cutting Modelling by DEM?1.000OnePetro
Back Analysis of in Situ Stress at Shallow Depth using Discontinuum Numerical Modeling - A Case Study at the Odenplan Station in Stockholm, Sweden1.000OnePetro
Application of Numerical Modelling for Large-Scale Underground Excavation in Foliated Rock Mass1.000OnePetro
Applicability of Polyaxial Rock Peak Strength Criteria in Numerical Modeling1.000OnePetro
A Parametric Study for the Strength of Jointed Rock Mass1.000OnePetro
A Conceptual Approach to Modelling Rock Fracture using the Smoothed Particle Hydrodynamics and Cohesive Cracks1.000OnePetro
Seismic Induced Rock Landslides using Continuum-Based Models1.000OnePetro
The Impact of Reservoir Impounding on the Behavior of Deepseated Rock Slides1.000OnePetro
Yes, We Can! Challenges in Development of Geotechnical Failure Mechanisms with the Help of Numerical Modeling1.000OnePetro
Tunnel Modelling in the Border Area Between Hard and Soft Rock1.000OnePetro
Numerical Analyses of Deep Tunnels Driven Through Massive Faults1.000OnePetro
Upper Bound Limit Analysis of Uplift Failure in Pressurized Sealed Rock Tunnels1.000OnePetro
FEM Analysis of the Existing and New Linings for Diversion Tunnels No. 1 & 2 - Rogun Dam & HPP Project1.000OnePetro
Evaluating the Influence of Block Size in Cable Bolt Performance1.000OnePetro
Rock Mass Classification and Geotechnical Model for the Foundation of a RCC Gravity Dam1.000OnePetro
Simulation Aided Engineering – A Multi-Parametric Rock Mass Simulation Workflow1.000OnePetro
Simulation of Naturally Fractured Hard Rock Preconditioning via Hydraulic Fracturing1.000OnePetro
Numerical Modelling for Rock Temperature Prediction in Deep Tunneling - Methodology and Verification1.000OnePetro
Numerical Study on Slope Stability in Consideration of the Influence of Weathering by Two-Phase Flow Analysis1.000OnePetro
Numerical Simulation of Deep-Hole Resistivity Anomaly under Crustal Stress1.000OnePetro
Observations for the Long-Term Behaviour of Rocks Based on Laboratory Testing1.000OnePetro
Sustainable Lining in Incompetent Rock Mass Using the Example of Konrad Mine1.000OnePetro
Maintenance Experiences from Underground Facilities in Swedish Crystalline Rock1.000OnePetro
Sustainability of Hydro Structures in Erodible Rock in Two Hydro Electric Projects, Arunachal Pradesh, India1.000OnePetro
Investigation of Long-Term Behaviour of Support Elements in Tunnelling1.000OnePetro
Long Time Monitoring and Refurbishment of the Tie-backs of Untersberg Cable Car Pillar 11.000OnePetro
Long-term Deformation of Mountain Tunnel Lining and Ground Under Swelling Rock Condition1.000OnePetro
Investigation of Some Mechanical Properties of Rocks Under the Effect of Different Body Temperatures1.000OnePetro
Lifetime of Polyethylene Geomembranes for Water Proofing of Tunnels From the Perspective of Polymer Engineering1.000OnePetro
Slope Protection Systems for EBA and ÖBB - New Standards of Performance, Sustainability and Handling - German and Austrian Railways Criteria and Approval1.000OnePetro
Understanding Extremely Varying Stress Conditions in the Ground1.000OnePetro
Tunnel Excavation in Multiple Fractured Mudstone1.000OnePetro
Rosenstein-Tunnel Stuttgart: A New Road Tunnel Project under Challenging Urban Conditions1.000OnePetro
Karavanke Tunnels in Permo-Carboniferous Rock1.000OnePetro
Valhalla - Innovative Pumped Hydro Storage Facilities in Chile – Challenges From a Rock Mechanical Point of View1.000OnePetro
Tunneling Under Challenging Conditions – General Renovation, Escape and Safety Passageways via the Supply Air Duct at the “Arlberg Road Tunnel"1.000OnePetro
Challenges of Tunneling in Adverse Geology1.000OnePetro
Lessons Learned From the Heading of the Reconnaissance Tunnel for the Kramer Tunnel, Germany1.000OnePetro
On the Non-Uniformity of Squeezing Deformations in the Ceneri Base Tunnel1.000OnePetro
Re-excavation Model of the Collapsed Tunnel Section for the Metro Station Type 2 Tunnel in İzmir-Turkey1.000OnePetro
Tunneling Challenges in Large Caverns Under Densely-Built Urban Areas – Case: Helsinki City Rail Loop1.000OnePetro
Tunneling in Difficult Ground Conditions using Different Tunnel Boring Methods1.000OnePetro
Integrated Assessment of Cliff Rockfall Hazards by Means of Rock Structure Modelling Applied to TLS data: New Developments1.000OnePetro
Influence of Geological and Meteorological Factors on the Frequency of Rockfalls1.000OnePetro
An Empirical Approach to Rockfall Fragmentation1.000OnePetro
Construction in a Geotechnically Challenging Slope ? Design, Safety Management and Monitoring1.000OnePetro
Data Processing for Long-Term Monitoring of an Underground Radioactive Waste Repository1.000OnePetro
Long-Term Monitoring Experience at the Mont Terri Rock Laboratory, St-Ursanne, Switzerland1.000OnePetro
Monitoring the Ground in Order to Optimize Support: Ground Support Elements Equipped with Optical Frequency Domain Reflectometry Technology1.000OnePetro
Monitoring and Safety Management of Tunnels in the Vienna Metro Network1.000OnePetro
Monitoring and Integrated Data Management for Safe Urban Tunnelling1.000OnePetro
TBM Tunnelling in Tectonical Faults – Design Conclusions Drawn from the Observed System Behavior1.000OnePetro
Applying SWE Standards in Geo-Monitoring1.000OnePetro
Monitoring and Geotechnical Safety Management at a Large OeBB Railway Tunnel Project in Vienna in Soft Ground and Low Overburden1.000OnePetro
Slope Movement Monitoring with Optical Fiber Technology1.000OnePetro
Scaling Effects on Elastic Properties of Jointed Rock Mass1.000OnePetro
Effects of Structural Contact Stiffness and Strength on Progressive Failure of Healed Structure1.000OnePetro
Laboratory Tests on Dutch Limestone (Mergel)1.000OnePetro
Comparison of Constant Normal Load (CNL) and Constant Normal Stiffness (CNS) Direct Shear Tests1.000OnePetro
Composite Elasticity of Copenhagen Limestone1.000OnePetro
Geotechnical Characterization of the Antalya Karstic Rock Masses1.000OnePetro
Obtaining Foundation Rock Mass Properties of the Surqawshan Earth Dam using UDEC1.000OnePetro
Mechanical Characterization of Tectonic Faults: Closing the Gap1.000OnePetro
A New Model of Strain Energies to Solve the Drawbacks of the Classical Limit Equilibrium Models of Forces for Rock Joints1.000OnePetro
Analysis of Stress-Strain Anisotropy of Soft Rock (by Example of Claystones)1.000OnePetro
Analyzing Schmidt Hammer in Evaluating Compressive Strength of Rock Mass1.000OnePetro
Application of Artificial Neural Networks in Estimation of Uniaxial Compressive Strength using Indirect Tensile Strength Data of Limestone Rocks1.000OnePetro
Comparison of Elastic Properties of Fractured Triassic Carbonate Rocks on a Base of Geophysical Research1.000OnePetro
Determining Strength and Fracture Toughness of Rock from Scratch Tests1.000OnePetro