Flow of Hydrophobically Modified Water-Soluble Polymers in Porous Media: Controlled Resistance Factors vs. Flow-Induced Gelation in the Semidilute Regime

Dupuis, Guillaume (Poweltec) | Rousseau, David (IFP Energies nouvelles) | Tabary, René (IFP Energies nouvelles) | Grassl, Bruno (IPREM-EPCP)



The associative properties of hydrophobically modified water-soluble polymers (HMWSPs) are attractive for improved oil recovery (IOR) because of both their enhanced thickening capability, compared with classical water-soluble polymers (for mobility-control applications), and their permeability-reduction, or plugging, ability (for well-treatment applications). In previous works, we have studied the injectivity of HMWSP made of sulfonated polyacrylamide backbones and alkyl side chains in the dilute regime and have shown, in particular, that it was largely governed by adsorption. In this paper, we report new experimental data on the injectivity of the same class of HMWSP solutions in the semidilute regime.

From membrane filtration tests at imposed flow rate, we have first observed the formation of a filter cake made of HMWSP physical gel, which remained largely permeable to polymers. Our observations are compatible with the creation of channels within the gel. This leads to a gel-filtration process, entailing modifications of the solution's viscosimetric properties, which can be explained by a rearrangement of the intra- and interchain hydrophobic bonds in the solution. The second part of our work consisted of injectivity tests in model granular packs. We have performed comparative experiments in porous media with variable permeabilities, but at the same shear rate in the pore throats. Results show that, above a critical permeability kkC, or a critical pore-throat radius rpkC, HMWSP injection led to stable resistance factors, with values close to the solution?s viscosity, and that, at less than kkC or rpkC, the very high resistance factors observed suggest that flow-induced gelation of the HMWSP takes place. Furthermore, resistance factors measured over the core internal sections are compatible with an in-depth formation of the gel. These insights could be of use for designing HMWSP better suited to mobility-control operations and for tuning HMWSP injection conditions for profile/conformance-control operations.