How to Avoid Bottom Hole Assembly Twist Off Challenges in Underreaming While Drilling Operations Using 4D Finite Element Analysis Modelling

Zhandayev, Olzhas (Schlumberger) | Ungaliyev, Gaukharbek (Schlumberger) | James, Biju (Schlumberger)

OnePetro 

Abstract

Historically underreaming while drilling (UWD) operations were implemented in offshore field in Azerbaijan to decrease Equivalent Circulating Density (ECD) and have better hole quality for casing running. Lithology in this UWD, 8.5 × 10.25-inch section consists of sand and shales with 3-5kpsi Unconfined Compressive Strength (UCS). Well trajectory has planned dogleg severity up to 3-3.5 deg/30m. In such a condition underreaming operations are known to be more challenging and complex compared to conventional drilling with bit only. In the offset well, an operator had fatigue related twist off at the reamer's lower sub connection which contributed to 58 hours of NPT.

Our challenge was to come up with the root cause of the twist off and then suggest changes in BHA to avoid this and prove that the modified BHA performs as expected. Our finite element analysis (FEA) based 4D modeling software can identify different vibrations (axial, lateral, stick slip), bending stresses and bending moment of each component in the BHA. Using this software, we were able to come up with the root cause of the twist off, which was due to high bending stress.

In UWD there are two cutting structures in the BHA, so optimizing both cutting structures has a significant impact on the overall performance. Successful run key points are to analyze the underreamer placement in BHA, operating parameters selection for different scenarios (when both bit and undereamer are in the same rocks or when the bit is in soft and undereamer is in hard rock), lateral vibrations and whirling phenomenon which can potentially damage and develop fatigue on BHA components. Multiple BHA's were simulated and based on the results the most stable BHA was recommended for the upcoming well.

The operator implemented the recommended BHA and a total of 1200m was successfully drilled and opened in one run without any NPT. All directional requirements were achieved and both bit and underreamer came out in good condition which confirmed that the new optimized BHA was stable in the downhole drilling conditions. The liner was also run without any issue confirming the borehole quality.

This paper will review the results of analysis and how modeling prediction was validated in the field.