Prediction of Hydrogeological Features and Hydrocarbon Enrichment Zones in Well Area BQ of HanCheng Block, East Ordos Basin, China

Yang, Zhao (PetroChina) | Fenjin, Sun (PetroChina) | Bo, Wang (PetroChina) | Xianyue, Xiong (PetroChina) | Wuzhong, Li (PetroChina) | Lianzhu, Cong (PetroChina) | Jiaosheng, Yang (PetroChina) | Meizhu, Wang (PetroChina)

OnePetro 

Compared with the conventional oil and gas reservoirs, hydrogeological gas controlling process linking CBM accumulation, enrichment and high yield is one of the important scientific problems for the development of a CBM field. Previous research results are mainly focused on the impact of hydrodynamics on CBM dissipation, preservation and enrichment, whereas relatively less work has been done on the quantitative evaluation of the hydrochemical field of CBM and establishing evaluation indicators of CBM enrichment. Therefore, taking BQ Well area of Hancheng block in east Ordos Basin as an example, this paper tried to initiate a systematic analysis of the controlling function of hydrogeological conditions on the enrichment and high yield of CBM in the study area. Hydrological evaluation indicators for hydrocarbon enrichment zones are established and two favorable hydrocarbon enrichment zones are optimized. It is of great significance for the established analytical method of hydrogeological rule on the studies of CBM enrichment characteristics and development in Hancheng CBM block, and subsequent exploration & development in the neighboring blocks.

Firstly, the relevant principle of hydrodynamics is applied to identify substantive parameters, such as measured in-situ reservoir pressure and CBM reservoir water level in the production wells to calculate the reduced water level and analyze groundwater level distribution characteristics; secondly, combined with the analysis of groundwater water types, the sources of the produced water from coal beds are identified, and the sealing property of the reservoir is demonstrated; on this basis, the study area is divided into the weak runoff zone and the stagnation zone. It is considered that the runoff intensity is relatively weak and the sealing capability is good in the study area, with no external water intrusion; finally, it is considered that, through integrated studies on the hydrochemical field, the desulfuration coefficient and sodium chloride coefficient can reflect the diversity of CBM reservoir conditions in a more elaborated way. Hydrological indicators based on hydrochemical characteristics are established, and two favorable enrichment zones are predicted.

This work proved that hydrogeological features of CBM reservoirs are able to characterize their accumulation conditions elaborately. In particular, the establishment of hydrological indicators can classify favorable enrichment zones and hereafter guide following CBM exploration & development. This methodology has been satisfactorily applied in BQ well area of Hancheng block where the data of gas bearing capacity is limited. High single well production rates have been obtained in the two predicted favorable enrichment zones. The hydrological indicators established in this paper are expected to be popularized and applied in other well areas of Hancheng block, which may accelerate the overall exploration & development progress in this block.