Application of X-Ray Computed Tomography (CT) for the Determination of Mechanical Behaviour of a Single Proppant

Rathnaweera, Tharaka D. (Monash University /Nanyang Technological University) | Gamage, Ranjith P. (Monash University) | Wei, Wu (Nanyang Technological University) | Perera, Samintha A. (The University of Melbourne) | Haque, Asadul (Monash University) | Wanniarachchi, Ayal M. (Monash University) | Bandara, Adheesha K. (Monash University)



Over the last several decades, many studies have generated a large amount of proppant performance data, but these studies have only focused on proppant conductivity, with no attention to how proppant mechanical properties vary under loading conditions. The impact of mechanical behaviour on proppant performance can only be fully understood by the combined investigation of micro-structural and mechanical changes with increasing loading. Therefore, this study aims to identify such micro-structural behaviour, and in particular the impact on proppant mechanical properties. Proppant samples were tested under one-dimensional compression loading using high-resolution X-ray CT scanning technology. The reconstructed images taken at different load stages were analysed to capture the micro-structural behaviour and finally correlated with the mechanical behaviour of the proppant.

According to the results, there are significant micro-pore voids inside the proppant mass. When the proppant has a higher degree of porosity, there is a considerable reduction of the compressive strength which is not favourable for hydro-fracturing treatment designs. Moreover, it is clear that the brittleness of the proppant decreases with increasing porosity, as its Young’s modulus reduces with increasing pore voids. Therefore, it is important to have high manufacturing standards to achieve effective proppant performance at great depths. The micro-structural behaviour under increasing loading was investigated by performing comprehensive CT image analysis using Drishti software. According to the results, under compressive loading, proppants cleave and generate large fragments like a flower, and this happens suddenly and quite violently through the material. Interestingly, post-failure analysis revealed that the failure mechanism of a single proppant consists of three major stress levels, where initially proppant fails at a high stress level and gains some crushing-associated strength at later stages.

1. Introduction

Unconventional oil/gas production has recently attracted the research community due to the uncontrollable increasing demand for primary energy sources (Perera et al., 2016; Wu et al., 2017). Since this method provides a good solution to energy scarcity, over the last several decades, the industry has tried to enhance the production rate, mainly focusing on production enhancement techniques which can be effectively used in the energy extraction from sub-surface geological formations. Of the various options, hydraulic fracturing is one of the best ways to enhance oil/gas extraction, as it increases the formation’s permeability, allowing easy movement of the extracted oil/gas towards the production well (Rutledge and Scott, 2003; Orangi et al., 2011; Vengosh et al., 2014; Wanniarachchi et al., 2015). However, this process may be jeopardised due to the high stress levels acting on the formation at great depths (both vertical overburden and confining pressures). One possible consequence is re-closure of the fracture network under downhole stress conditions, which severely affects the post-fracturing production. Such issues can negate the use of proppant as a hydraulic fracture treatment method where proppants injected with the fracturing fluid prop the fractures, withstanding the fracture-closure stress (Wanniarachchi et al., 2015). Although the proppant gives a reliable solution to overcome this issue (propping the fracture network), sufficient closure stress can cause mechanical failure of the proppant, changing the fracture conductivity, causing re-closure of the fracture network, and altering the bulk properties of the proppant pack, which can negatively influence oil/gas extraction. Therefore, it is important to understand the mechanical behaviour of proppants under downhole stress conditions before injecting proppant with the hydro-fracturing fluid.