Correlation of Production Simulations for Contemporary Multi-Stage Horizontal Unconventional Well Applications Including ULW Proppant with Production Performance Experienced from a Decade of ULW Proppant Application

Brannon, Harold (Sun Specialty Products)

OnePetro 

Abstract

The combination of extended-length horizontal drilling and high volume hydraulic fracturing has led to previously unimaginable production increases, yet the recovery potential of unconventional oil and gas resources remains largely unrealized. Recovery factors for unconventional oil and gas wells are typically reported at < 20% in gas shale reservoirs and < 10% in the oil plays.

Neutrally buoyant ultra-lightweight proppants have been demonstrated to effectively provide production from fracture area that is otherwise unpropped and thus, non-contributive with conventional sand/slickwater hydraulic fracturing processes. Production simulations illustrate that treatment designs incorporating neutrally buoyant ULW proppant treatment designs tailored for contemporary unconventional well stimulations deliver cumulative production increases of 30% to over 50% compared to the typical large volume sand/slickwater treatments. Unfortunately, production simulation results may not sufficiently lessen risk uncertainties for operators planning high-cost multi-stage horizontal stimulations. Therefore, several field trial projects using the neutrally buoyant ULW proppant in extended-length horizontal unconventional wells are currently in progress to validate the production simulations.

Since the initial 4-stage fracturing stimulation incorporating neutrally buoyant ultra-lightweight proppant in 2007, deployment has occurred in fracture stimulating hundreds of oil and gas wells spanning multiple basins and reservoirs. Most of the wells are vertical or relatively short lateral wells common to asset development practices predating the unconventional shale completions mania, but many were targeted at the same unconventional reservoirs as the current multi-stage horizontal completions. Several published case histories have documented the production enhancement benefits afforded by the legacy ULW proppant wells, but questions remained as to how those lessons might be correlated to provide engineers confidence in the current production simulations.

Well completion and production information was mined from the various accessible databases for the neutrally buoyant ULW proppant wells. The scope of the legacy data compiled for analysis was limited to the reservoirs common to the current field trials and production simulations, ie. unconventional oil and gas shale reservoirs. Production performance contributions of neutrally buoyant ULW proppant in past applications were compared with the production uplift observed in applications and/or simulated application of neutrally buoyant ultra-lightweight proppant fracturing treatments in current multi-stage horizontal reservoirs.

The lessons learned from this investigation provide the practicing engineer the means to confidently assess production simulation data for multi-stage horizontal unconventional completions incorporating neutrally buoyant ulw proppant in the treatment designs.

  Country: North America > United States (1.00)
  Industry: Energy > Oil & Gas > Upstream (1.00)
  Oilfield Places:
  Technology: Information Technology (0.68)