Integrated Approach for Proper Resource Assessment of a Challenging Over-Pressured Gas Condensate Reservoir: Case Study of Analytical and Numerical Modeling of a Central Luconia Carbonate Field

Hajizadeh Mobaraki, Alireza (PETRONAS) | Bashir, Aamir (PETRONAS) | Shen Sow, Chia (PETRONAS) | Deo Tewari, Raj (PETRONAS) | B M Zakei, Amran (PETRONAS)

OnePetro 

Abstract

Proper and reliable resource assessment of hydrocarbons in-place and recoverable volumes is one of the key factors in field development planning (FDP) and determines the commitments made to the host government for the reserves to be developed (RTBD). Many times, it is critical to update the resources and reserves of a producing asset through full field reviews (FFR) to gauge the production attainment and success of initial forecasts in FDP and also to locate any upside/locked-in potential.

Often uncertainties in the field development are expected to reduce as the field produces, but in many cases the results show otherwise due to lack/ inaccuracy of data or existing reservoir complexities. This paper elaborates how an integrated approach utilizing analytical methods (material balance, pressure and rate transient analysis) combined to numerical reservoir simulation is used for accurate resource assessment of an over-pressured gas condensate reservoir that suffers from lack of geological and petrophysical data, faulty production data measurement system and complex fluid and pressure behavior.

A comprehensive workflow comprising of different methodologies is used to harness the available geological, petrophysical, production and pressure data. Over-pressured and compressibility corrected gas material balance and pressure and rate transient analysis (RTA) are conducted using static and flowing data to encompass the existing uncertainties on resource numbers and generate low, base and high cases. The results of these methods are then successfully utilized to construct the dynamic reservoir model for evaluation of the upside and near field exploitation (NFE) potential. The results of the full field review lead to a 50% increase in the gas initially in-place compared to FDP volumes and a significant addition in the proven reserve. This increase in volumes was investigated through proactive surveillance for a period of time and was well supported by the reservoir and well performance.

A novel approach to numerically model the over-pressured gas reservoirs is developed using a simple concept of compressibility modifications supported by production data history match and analogue core data. The results of the study greatly benefited the production sharing contract (PSC) and lead to production enhancement from the field through a proper debottlenecking project.