Evaluating the Influence of Block Size in Cable Bolt Performance

Stavrou, Anastasios (AECOM) | Murphy, William (University of Leeds) | Lawrence, James Anthony (Radioactive Waste Management Ltd.)

OnePetro 

Abstract

The impact of rock block size on cable bolt performance has been assessed using the Universal Distinct Element Code (UDEC). The results indicate that the interaction between rock mass and reinforcement changes with variable block volumes and highlights that block size plays a key role when modelling and designing support systems. A simple statistical approach for calculating the forces acting along the length of the bar demonstrated that bolt design should not solely based on the maximum predicted loads that commonly concentrate along sliding discontinuities, because this reaction may not represent the overall bolt behaviour and may have been triggered by unrepresentative fracture patterns. Because fracture frequency is difficult to be controlled in UDEC due to interacting joint sets, a simple method for controlling the input block size is suggested to transform borehole or scanline survey data into more realistic block volumes.

1 Introduction

The choice of appropriate techniques to evaluate the response of the structural elements used as rock reinforcement in mining and civil engineering projects is both a critical decision and a very subjective matter. In many cases, a simple empirical relationship, a theoretical expression or even the designer’s practical experience may be adequate while, in other cases, sophisticated numerical modelling, in-situ and laboratory testing, validation and redesign may be required to arrive at an effective and economical support solution.

The most common types of reinforcement used to restrict deformation and improve the self-supporting capacity of blocky rock masses are rock bolts, cables and ground anchor bars. Their behaviour is typically assessed based on the maximum predicted loads and a decision is taken by considering the maximum resistance the structural element can display in rock mass deformation. When rock joints are considered explicitly in numerical models, the maximum load-displacement concentrations commonly occur along that portion of the reinforcement where shearing and/or opening or closing discontinuities interact with the support system (Itasca 2011). Although, this observation may result in representative rock-support responses, it may lead to misleading evaluations and the utilisation of conservative support solutions. This is because high loads developed along relatively short lengths of the bar due to localised individual joint movements may not represent the general response of the rock-support system. Additionally, unrealistic high loads may have been triggered due to unrepresentative joint geometrical parameters (e.g. spacing, persistence, number of joint sets, etc.). Therefore, the accurate representation of the structural geology is extremely important when modelling rock masses because the size and shape of rock blocks influence the deformation of the disturbed zone around the excavation (Shen & Barton 1997) which in turn controls the rock-support response and design.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
Influence of the Primary Stress State on the Disc Cutter Penetration1.000OnePetro
Finite Element Simulations of Twin Shallow Tunnels1.000OnePetro
Earthquake Induced Rockfall Along Cut Slopes - A Case Study from Luhri, Himachal Pradesh, India1.000OnePetro
Characterization of Basalt for Stability Assessment of an Abandoned Underground Mine in Mendig, Germany1.000OnePetro
Effect of Time and Wear on the Basic Friction Angle of Rock Discontinuities1.000OnePetro
Physical and Numerical Simulations of Super-Critical Subsidence as Affected by Opening Geometries and Depths1.000OnePetro
Petrographic, Physical and Mechanical Features of Sedimentary Rocks of the South Catarinense Coalfield, Brazil1.000OnePetro
Numerical Methods for the Design of Support Systems in a Deep Metalliferous Mine in Turkey1.000OnePetro
Compressive Strength Tests of Cabled Rock Specimens as Pillar Analogues1.000OnePetro
Application of Artificial Neural Networks in Estimation of Uniaxial Compressive Strength using Schmidt Hammer Rebound Number Data under Specific Geological Conditions1.000OnePetro
3D Geometrical Modeling of Folded Layers: A Case Study from Lead and Zinc Mine of Anjire, Isfahan, Iran1.000OnePetro
Real Time Stress Change Estimation using Strain Measurements1.000OnePetro
Influence of Constitutive Model Choice on Simulated Stress Path and Yield Evolution in Deep Mine Pillar Analysis – Experience from the Creighton Mine, Sudbury, Canada1.000OnePetro
Rock Mechanics Investigations in Connection with the Introduction of a New Pillar System in a Deep Magnesite Mine1.000OnePetro
An investigation of Shaft Wall Stability in Low-Strength Rock Mass Conditions at the Ust-Jaiwa Freeze Shaft Project1.000OnePetro
Simulation of Mining Impact on Water Resources1.000OnePetro
On the Development of a Slope Instability Index for Open-Pit Mines using an Improved Systems Approach1.000OnePetro
Statistical Calculation of Mean Stress Tensor using both Euclidean and Riemannian Approaches1.000OnePetro
Stability Analysis of Internal Dragline Dump: Distinct Modeling1.000OnePetro
Stability Analysis of Blocky Rock Slope Excavation Bbased on Site Non-Contact Measurement and GeoSMA-3D Modelling1.000OnePetro
Rock Soil Usage to Provide Buildings and Structures Stability in Term of Deep-Frozen Soil1.000OnePetro
Rock mechanical analysis of the underground complex in Tapiola Center, Espoo, Finland1.000OnePetro
Probabilistic Numerical Models using Monte Carlo and Point Estimate Methods1.000OnePetro
Modelling of Rock Bolts using the Finite Element Method1.000OnePetro
Mapping Rock Surface Roughness with Photogrammetry1.000OnePetro
Investigations on Telescope Yielding Elements with Porous Filling1.000OnePetro
Effect of Carbon Dioxide Sequestration on the Mechanical Properties of Indian Coal1.000OnePetro
Dynamic Pressures in a Plunge Pool of a Dam1.000OnePetro
Tunnel Face Stability Investigation by Means of 3D Numerical Analysis and Hand Calculations1.000OnePetro
Suggestion for a Documentation of Unexpected Standstills in TBM-Tunnelling1.000OnePetro
Clump Models: An Improvement in the Rock Cutting Modelling by DEM?1.000OnePetro
Back Analysis of in Situ Stress at Shallow Depth using Discontinuum Numerical Modeling - A Case Study at the Odenplan Station in Stockholm, Sweden1.000OnePetro
Application of Numerical Modelling for Large-Scale Underground Excavation in Foliated Rock Mass1.000OnePetro
Applicability of Polyaxial Rock Peak Strength Criteria in Numerical Modeling1.000OnePetro
A Parametric Study for the Strength of Jointed Rock Mass1.000OnePetro
A Conceptual Approach to Modelling Rock Fracture using the Smoothed Particle Hydrodynamics and Cohesive Cracks1.000OnePetro
Seismic Induced Rock Landslides using Continuum-Based Models1.000OnePetro
The Impact of Reservoir Impounding on the Behavior of Deepseated Rock Slides1.000OnePetro
Yes, We Can! Challenges in Development of Geotechnical Failure Mechanisms with the Help of Numerical Modeling1.000OnePetro
Tunnel Modelling in the Border Area Between Hard and Soft Rock1.000OnePetro
Numerical Analyses of Deep Tunnels Driven Through Massive Faults1.000OnePetro
Upper Bound Limit Analysis of Uplift Failure in Pressurized Sealed Rock Tunnels1.000OnePetro
FEM Analysis of the Existing and New Linings for Diversion Tunnels No. 1 & 2 - Rogun Dam & HPP Project1.000OnePetro
Rock Mass Classification and Geotechnical Model for the Foundation of a RCC Gravity Dam1.000OnePetro
Simulation Aided Engineering – A Multi-Parametric Rock Mass Simulation Workflow1.000OnePetro
Simulation of Naturally Fractured Hard Rock Preconditioning via Hydraulic Fracturing1.000OnePetro
Numerical Modelling for Rock Temperature Prediction in Deep Tunneling - Methodology and Verification1.000OnePetro
Numerical Study on Slope Stability in Consideration of the Influence of Weathering by Two-Phase Flow Analysis1.000OnePetro
Numerical Simulation of Deep-Hole Resistivity Anomaly under Crustal Stress1.000OnePetro
Observations for the Long-Term Behaviour of Rocks Based on Laboratory Testing1.000OnePetro
Sustainable Lining in Incompetent Rock Mass Using the Example of Konrad Mine1.000OnePetro
Maintenance Experiences from Underground Facilities in Swedish Crystalline Rock1.000OnePetro
Sustainability of Hydro Structures in Erodible Rock in Two Hydro Electric Projects, Arunachal Pradesh, India1.000OnePetro
Investigation of Long-Term Behaviour of Support Elements in Tunnelling1.000OnePetro
Long Time Monitoring and Refurbishment of the Tie-backs of Untersberg Cable Car Pillar 11.000OnePetro
Long-term Deformation of Mountain Tunnel Lining and Ground Under Swelling Rock Condition1.000OnePetro
Investigation of Some Mechanical Properties of Rocks Under the Effect of Different Body Temperatures1.000OnePetro
Lifetime of Polyethylene Geomembranes for Water Proofing of Tunnels From the Perspective of Polymer Engineering1.000OnePetro
Slope Protection Systems for EBA and ÖBB - New Standards of Performance, Sustainability and Handling - German and Austrian Railways Criteria and Approval1.000OnePetro
Understanding Extremely Varying Stress Conditions in the Ground1.000OnePetro
Tunnel Excavation in Multiple Fractured Mudstone1.000OnePetro
Rosenstein-Tunnel Stuttgart: A New Road Tunnel Project under Challenging Urban Conditions1.000OnePetro
Karavanke Tunnels in Permo-Carboniferous Rock1.000OnePetro
Valhalla - Innovative Pumped Hydro Storage Facilities in Chile – Challenges From a Rock Mechanical Point of View1.000OnePetro
Tunneling Under Challenging Conditions – General Renovation, Escape and Safety Passageways via the Supply Air Duct at the “Arlberg Road Tunnel"1.000OnePetro
Challenges of Tunneling in Adverse Geology1.000OnePetro
Lessons Learned From the Heading of the Reconnaissance Tunnel for the Kramer Tunnel, Germany1.000OnePetro
On the Non-Uniformity of Squeezing Deformations in the Ceneri Base Tunnel1.000OnePetro
Re-excavation Model of the Collapsed Tunnel Section for the Metro Station Type 2 Tunnel in İzmir-Turkey1.000OnePetro
Tunneling Challenges in Large Caverns Under Densely-Built Urban Areas – Case: Helsinki City Rail Loop1.000OnePetro
Tunneling in Difficult Ground Conditions using Different Tunnel Boring Methods1.000OnePetro
Integrated Assessment of Cliff Rockfall Hazards by Means of Rock Structure Modelling Applied to TLS data: New Developments1.000OnePetro
Influence of Geological and Meteorological Factors on the Frequency of Rockfalls1.000OnePetro
An Empirical Approach to Rockfall Fragmentation1.000OnePetro
Construction in a Geotechnically Challenging Slope ? Design, Safety Management and Monitoring1.000OnePetro
Data Processing for Long-Term Monitoring of an Underground Radioactive Waste Repository1.000OnePetro
Long-Term Monitoring Experience at the Mont Terri Rock Laboratory, St-Ursanne, Switzerland1.000OnePetro
Monitoring the Ground in Order to Optimize Support: Ground Support Elements Equipped with Optical Frequency Domain Reflectometry Technology1.000OnePetro
Monitoring and Safety Management of Tunnels in the Vienna Metro Network1.000OnePetro
Monitoring and Integrated Data Management for Safe Urban Tunnelling1.000OnePetro
TBM Tunnelling in Tectonical Faults – Design Conclusions Drawn from the Observed System Behavior1.000OnePetro
Applying SWE Standards in Geo-Monitoring1.000OnePetro
Monitoring and Geotechnical Safety Management at a Large OeBB Railway Tunnel Project in Vienna in Soft Ground and Low Overburden1.000OnePetro
Slope Movement Monitoring with Optical Fiber Technology1.000OnePetro
Scaling Effects on Elastic Properties of Jointed Rock Mass1.000OnePetro
Effects of Structural Contact Stiffness and Strength on Progressive Failure of Healed Structure1.000OnePetro
Laboratory Tests on Dutch Limestone (Mergel)1.000OnePetro
Comparison of Constant Normal Load (CNL) and Constant Normal Stiffness (CNS) Direct Shear Tests1.000OnePetro
Composite Elasticity of Copenhagen Limestone1.000OnePetro
Geotechnical Characterization of the Antalya Karstic Rock Masses1.000OnePetro
Obtaining Foundation Rock Mass Properties of the Surqawshan Earth Dam using UDEC1.000OnePetro
Mechanical Characterization of Tectonic Faults: Closing the Gap1.000OnePetro
A New Model of Strain Energies to Solve the Drawbacks of the Classical Limit Equilibrium Models of Forces for Rock Joints1.000OnePetro
Analysis of Stress-Strain Anisotropy of Soft Rock (by Example of Claystones)1.000OnePetro
Analyzing Schmidt Hammer in Evaluating Compressive Strength of Rock Mass1.000OnePetro
Application of Artificial Neural Networks in Estimation of Uniaxial Compressive Strength using Indirect Tensile Strength Data of Limestone Rocks1.000OnePetro
Comparison of Elastic Properties of Fractured Triassic Carbonate Rocks on a Base of Geophysical Research1.000OnePetro
Comparison of Mechanical Strength Prediction with Schmidt Hammer Rebound Value and Rebound Coefficient1.000OnePetro
Determining Strength and Fracture Toughness of Rock from Scratch Tests1.000OnePetro