Finite Element Modeling of Iceberg Interaction with Subsea Protection Structures

Drover, E. (Memorial University) | Kenny, S. (Memorial University)


Ice feature interaction with subsea infrastructure or the seabed is acomplex nonlinear event, for which many analytical and advanced computationaltools have been developed with demonstrated application. Although subsea fieldshave been developed in ice gouge environments, such as the Grand Banks,consideration of alternative methods for protecting subsea infrastructure is ofgreat importance. A more in-depth understanding of ice feature mechanicalbehavior and interaction with subsea infrastructure is required.


For various iceberg shapes and loading conditions, the finite element modelspresented in this paper examine the interaction of free-floating ice featureswith protective structures located above or partially above the mudline. Apreliminary assessment of an interaction scenario involving a gouging icebergkeel with a buried protection structure is also presented. The outcome of thisstudy enhances understanding of the primary factors to be considered for thedesign of protection structures in ice environments and highlights some of thetechnical issues associated with the development and calibration of advancedsimulation tools.