A Data Analytics Framework for Analyzing the Effect of Frac Hits on Parent Well Production

Guo, Yifei (The University of Texas at Austin) | Ashok, Pradeepkumar (The University of Texas at Austin) | van Oort, Eric (The University of Texas at Austin) | Patterson, Ross (Hess Corporation) | Zheng, Dandan (Hess Corporation) | Isbell, Matthew (Hess Corporation) | Riopelle, Austin (Marathon Oil Corporation)


Abstract Well interference, which is commonly referred to as frac hits, has become a significant factor affecting production in fractured horizontal shale wells with the increase in infill drilling in recent years. Today, there is still no clear understanding on how frac hits affect production. This paper aims to develop a process to automatically identify the different types of frac hits and to determine the effect of stage-to-well distance and frac hit intensity on long-term parent well production. First, child well completions data and parent well pressure data are processed by a frac hit detection algorithm to automatically identify different frac hit intensities and duration within each stage. This algorithm classifies frac hits based on the magnitude of the differential pressure spikes. The frac stage to parent well distance is also calculated. Then, we compare the daily production trend before and after the frac hits to determine the severity of its influence on production. Finally, any evident correlations between the stage-to-well distance, frac hit intensity and production change are identified and investigated. This work utilizes 3 datasets covering 22 horizontal wells in the Bakken Formation and 37 horizontal wells in the Eagle Ford Shale Formation. These sets included well trajectories, child well completions data, parent well pressure data and parent well production data. The frac hit detection algorithm developed can accurately detect frac hits in the available dataset with minimal false alerts. The data analysis results show that frac hit severity (production response) and intensity (pressure response) are not only affected by the distance between parent and child wells, but also affected by the directionality of the wells. Parent wells tend to experience more frac hits from the child frac stages with smaller direction angles and shorter stage-to-parent distances. Formation stress change with time is another factor that affects frac hit intensity. Depleted wells are more susceptible to frac hits even if they are further from the child wells. Also, we observe frac hits in parent wells due to a stimulation of a child well in a different shale formation. This paper presents a novel automated frac hit detection algorithm to quickly identify different types of frac hits. This paper also presents a novel way of carrying out production analysis to determine whether frac hits in a well have positive or negative influence long-term production. Additionally, the paper introduces the concept of the stage-to-well distance as a more accurate metric for analyzing the influence of frac hits on production.

Duplicate Docs Excel Report

None found

Similar Docs  Excel Report  more

None found