Numerical Study of Interaction Between Moored Ship and Ice Ridge for Head on Case

Zhou, Li (Jiangsu University of Science and Technology) | Niu, Jianjie (Jiangsu University of Science and Technology) | Shi, Wei (Dalian University of Technology) | Chuang, Zhenju (DNV GL)

OnePetro 

ABSTRACT

This paper aims to numerically simulate the loading process when a moored ship is intruded by an ice ridge. Ice force caused by ice keel is calculated based on suggestions from ISO while the ice force due to consolidated layer is taken as level ice and simulated with circumferential crack method. The equation of motion is solved at each time step. A case study is given to show main features during the moored ship and ice ridge interaction. The result shows that the present numerical simulation is promising to be used in the design for moored structures in ice ridge.

INTRODUCTION

In the Arctic, there exist many different types of features such as pure level ice, brash ice, ice rubble and ridges, ridge fields and icebergs, all with different structural and mechanical properties and behavior. For ships and offshore structures, first year ice ridge is a key consideration due to the extreme ice loads acting on the structures. It is crucial to determine the design load levels for offshore structures in ice-infested waters, can also bring a threat to shipping and navigation activities.

Typically, an ice ridge is formed when ice sheets are compressed against each other due to environmental factors, such as wind, current in the sea, thermal expansion etc. From geometry aspect of ice ridge, it is composed of three parts: sail, consolidated layer and keel. The above water part, called the sail, has pores filled with air and snow. The underwater part, called the keel, has pores filled with water and air pockets can exist. The ridge keel is further separated into an upper refrozen layer called the consolidated layer and a lower unconsolidated part. The consolidated layer grows through the ridge lifetime as a function of the surrounding meteorological and oceanographic conditions, air and water temperature, snow depth and the velocity of the wind, and surrounding currents are of principal importance. There was a wide variation in the shapes of the first-year sea ice ridges (Timco & Burden, 1997).

By developing general constitutive laws for ice ridge, Heinonen (2004) and Serré (2011) used finite element software to simulate the ice ridge load. At present, moored ships are often used to oil exploration and exploitation in ice-infested waters. For example, starting in the mid-1970s to the late 1980s, Dome Petroleum deployed floating drill-ships named Canmar during the summer months. In some water, the ice ridge action should be taken into consideration. A sketch of the moored ship in ice ridge is shown in Figure 1.