A Geological Evaluation of Jurassic Shale Oil Plays in Southern England.

Iwobi, Christopher | More, Stephen | Major, Jan | Verhagen, Iris | Brindle, Scott | Reboul, Romain | O'Connor, Dave



Recent drilling results have highlighted the potential for the development of Jurassic source rocks of southern England as a shale oil play. Sustained natural oil flows have been reported by UKOG (2015) from the tight, Lower Kimmeridge limestones in the Horse Hill-1 well. According to the operator, this discovery is naturally fractured and can be produced without hydraulic fracture stimulation.

The occurrence of shale gas in the UK has been known of since the nineteenth century, but development of this resource attracted very little interest until recent years (Selley, 2012; Andrews, 2014). The first exploration well in the United Kingdom that was specifically drilled for shale gas was Preese Hall-1 in northwest England in 2010. This well was hydraulically fractured in the Bowland Shale, but operations were suspended following reports of repeated seismicity caused by the injection of fluid during hydraulic fracture treatment (Green et al., 2012). Assessments of the Carboniferous shale gas potential of northern England and Scotland and of the Jurassic shale oil potential of southern England have been published by the BGS/DECC (Andrews, 2013, 2014; Monaghan, 2014). These studies listed the various criteria for evaluation of shale plays and provided broad descriptions and resource estimates for the Carboniferous and Jurassic shale plays in the United Kingdom.

This paper presents the results of an integrated petrophysical and geological assessment of the Jurassic sequence in the south of England. The study area stretched from the Weald and Vale of Pewsey Basins in the north to the onshore parts of the Portland–Isle of Wight Basin on the Dorset coast in the south (Figure 1). The evaluation focused on the Kimmeridge Clay Formation, the Oxford Clay Formation, the Downcliff Clay Member, Charmouth Mudstone Formation and the Blue Lias Formation.

The stratigraphic framework used for the study is based on the extrapolation of the well-known outcrop stratigraphy on the Dorset Coast to the study wells. Wireline log data and new sedimentological core description results were used to constrain facies mapping. Detailed sedimentological core description was carried out on three of the twelve study wells. From the trends observed in the wireline log data, the lithofacies and level of oxygenation, 14 initial facies associations were assigned over the cored intervals ranging from restricted shallow marine through shoreface to shelfal environments. These facies associations were grouped into seven combined facies associations which were used as input for the electrofacies analysis and facilitated the extrapolation of facies to intervals that lacked core data Additionally this workflow provided a useful template for estimating Total Organic Carbon TOC from logs using the CARBOLOG® equation and this resulted in a significant improvement in the correlation between the laboratory measured TOC values and the log-based TOC estimates. Results from the mineralogical analysis of core and cutting samples were utilised to calibrate and improve the petrophysical interpretations and to assess the elastic properties of the rocks in the intervals of interest. The petrophysical data, elastic properties and the facies interpretations were used to evaluate and map the development potential of the Jurassic source rock intervals as unconventional reservoirs.

An extensive geochemical database was combined with new analyses to characterise the source rocks. This data was integrated into 1-D basin models to identify and map effective source kitchen areas. The organic matter in the analysed interval is dominated by Type II kerogen, with significant input of Type III kerogen towards the London-Brabant Massif. The Upper Jurassic Kimmeridge Clay and the Oxford Clay are within the early oil window, while the Lower Jurassic Downcliff Clay Member, Charmouth Mudstone Formation and the Blue Lias Formation have reached peak oil maturity in the deeper parts of the Weald Basin. The source richness and kerogen types were combined with the maturity maps to create generation risk maps.

The risk for ground water contamination from hydraulic fracturing was also evaluated. These results were combined with the reservoir and generation risk maps to produce common risk segment maps in order to identify the sweet spots in the study area.

  Country: Europe > United Kingdom (1.00)
  Geologic Time: Phanerozoic > Mesozoic > Jurassic > Upper Jurassic (0.67)
  Industry: Energy > Oil & Gas > Upstream (1.00)