Case Studies: Pressure-Transient Analysis for Water Injector with the Influence of Waterflood-Induced Fractures in Tight Reservoir

Wang, Yang (China University of Petroleum – Beijing and Pennsylvania State University) | Cheng, Shiqing (China University of Petroleum – Beijing) | Zhang, Kaidi (Lusheng Petroleum Development Co., Ltd, SINOPEC Shengli Oilfield Company) | Xu, Jianchun (China University of Petroleum – East China) | Qin, Jiazheng (China University of Petroleum – Beijing) | He, Youwei (China University of Petroleum – Beijing and Texas A&M University) | Luo, Le (China University of Petroleum – Beijing) | Yu, Haiyang (China University of Petroleum – Beijing)

OnePetro 

Abstract

Pressure-transient analysis (PTA) of water injectors with waterflood-induced fractures (WIFs) is much more complicated than hydraulic fracturing producers due to the variation of fracture properties in the shutting time. In plenty of cases, current analysis techniques could result in misleading interpretations if the WIFs are not well realized or characterized. This paper presents a comprehensive analysis for five cases that focuses on the interpretation of different types of pressure responses in water injectors.

The characteristic of radial composite model of water injector indicates the water erosion and expansion of mini-fractures in the inner region. The commonplace phenomena of prolonged storage effect, bi-storage effect and interpreted considerably large storage coefficient suggest that WIF(s) may be induced by long time water injection. Based on this interpreted large storage coefficient, fracture half-length can be obtained. In the meanwhile, the fracture length shrinks and fracture conductivity decreases as the closing of WIF, which has a considerable influence on pressure responses. Results show that the upward of pressure derivative curve may not only be caused by closed outer boundary condition, but also the decreasing of fracture conductivity (DFC). As for multiple WIFs, they would close successively after shutting in the well due to the different stress conditions perpendicular to fracture walls, which behaves as several unit slopes on the pressure derivative curves in the log-log plot.

Aiming at different representative types of pressure responses cases in Huaqing reservoir, Changqing Oilfield, we innovatively analyze them from a different perspective and get a new understanding of water injector behaviors with WIF(s), which provides a guideline for the interpretation of water injection wells in tight reservoirs.