Underlying Mechanisms of Tight Reservoir Wettability and Its Alteration

Luo, Peng (Saskatchewan Research Council) | Li, Sheng (University of Calgary) | Knorr, Kelvin D. (Saskatchewan Research Council) | Nakutnyy, Petro (Saskatchewan Research Council)



The wettability of tight reservoir rock plays a critical role in affecting relative permeability and in turn oil recovery. However, the link between wettability and its effects on oil recovery remains poorly understood, and the potential to boost oil recovery by varying the wettability has not been fully explored. This work was an attempt to conduct a systematic experimental study to improve our understanding of wettability of tight oil reservoirs and the mechanisms of its alteration on oil recovery improvement. Contact angles of individual rock-forming minerals and reservoir rock samples were first measured in brines with different salinities. Then the minerals were aged separately with a medium crude oil with sufficient polar components to investigate their tendency for wettability alteration. As well, oil and water distributions inside tight core samples were scanned by a synchrotron-based computed tomography scanner. Contact angle measurements for all minerals and reservoir rocks showed initial water-wetting behavior. After aging with crude oil for over two months, polar components from the oil adsorbed onto the solid surfaces to alter their wettability to less water wet. Consequently, this wettability alteration contributed to oil and water redistribution and saturation change in reservoir cores.

The experimental findings suggested that the wettability in tight reservoirs is a strong function of rock mineralogy, formation fluid properties, and saturation history. Preliminary numerical simulation revealed how rock wettability alteration could contribute to improved oil recovery through waterflooding.