Improved Producibility after Delayed Filter Cake Breaker Treatment in the Safaniya Offshore Field in Saudi Arabia

Al-Kuait, A.M.S. (Saudi Aramco) | Al-yateem, Karam Sami (ARAMCO Services Company) | Olivares, Tulio (Halliburton) | Zubail, Makki A. (Saudi Aramco) | El Bialy, Moustafa (Halliburton) | Ezell, Ryan G. (Halliburton) | Maghrabi, Shadaab (Halliburton)


Safaniya is one of largest offshore oil fields located north of Dhahran in Saudi Arabia. It is 50 km by 15 km in size and began production in 1956. Lately, a few wells drilled in this field showed reservoir damage where the production dropped or the well had no flow. Workover operations were performed on six wells and two new wells were drilled. For all eight wells, 6?-in. laterals were drilled through the reservoirs with an engineered invert emulsion drilling fluid (RDF). The RDF design was controlled to ensure an acid-soluble, thin, external filter cake with no fines invasion. The vulnerability of the filter cake to be attacked by the acid was fundamental to this RDF design. A delayed filter cake breaker fluid was then designed for use on the 6?-in. laterals; this fluid consisted of an organic acid precursor (OAP) and a water wetting additive. The OAP released acid in a delayed manner, whereas the water wetting additive made the oil-based filter cake water wet, to make it vulnerable to acid attack. With this approach, the filter cake was removed uniformly in all subject laterals across the reservoir. The production data on the eight wells treated with the OAP show an improved oil production rate of more than 4,000 B/D for six of the eight wells, which exceeds the key performance indicator (KPI) set for the laterals. In previous years from 2005-10, the six workover wells showed, on average, very low oil production rates (OPR) comparatively. In addition, after the OAP treatment, these six wells show higher well flow head pressures than in 2005-10. The water cut percentage on these laterals was 0 or less than 1, compared to 2005-10, when the water cut percentage varied from 8% to 50% for these workover wells. This paper discusses the workover operation of the six wells and the drilling and delayed stimulation treatment on two new wells in the Safaniya field, including laboratory evaluation, field application and production data.