Monitoring Typhoon-induced Vibration and Tilt of Offshore Wind Turbine System for Batholith Seabed

Sun, Xiao-Qian (Zhong Neng Power-tech Development Co. Ltd.) | Cao, Shu-Gang (Zhong Neng Power-tech Development Co. Ltd.) | Chi, Yan (Zhong Neng Power-tech Development Co. Ltd.) | Zhu, Zhi-Cheng (Zhong Neng Power-tech Development Co. Ltd.)


This study investigated a vibration and tilt monitoring system for an offshore wind turbine constructed using a high-rise-pile- cap supporting foundation, which is the first offshore wind power project in South China with a batholith seabed. The analysis of data collected by the system during the 2016 typhoon Meranti showed that the typhoon significantly affected vibration and instantaneous tilt of the supporting system without any significant change to the first natural frequency. Additionally, it did not produce any permanent inclination, indicating that no serious structural failure occurred under the influence of the typhoon. However, during the typhoon, the vibration acceleration, vibration intensity, and the effective inclination of the high-rise-pile-cap supporting system using rock-socketed piles were smaller than those with driven frictional piles, indicating that the former is better than the latter in terms of resistance to vibration and tilt.


The construction of offshore wind power plants in China faces many challenges, including the raging typhoons in the East and South Seas. Each year, the Guangdong province experiences typhoons three times on average, accounting for 33% of the annual typhoons in China’s coastal areas. The proportions of typhoon episodes in Taiwan, the Hainan province, the Fujian province, and the Zhejiang province are 19%, 17%, 16%, and 10%, respectively (Wu and Li, 2012). The extreme vibration and abnormal inclination of the offshore wind turbine supporting system as a result of typhoons sometimes lead to structural failures and can even result in the collapse of the wind turbine structure into the ocean.