A Step Change for Single-Well Chemical-Tracer Tests: Field Pilot Testing of New Sets of Novel Tracers

AlAbbad, Mohammed A. (Saudi Aramco) | Sanni, Modiu L. (Saudi Aramco) | Kokal, Sunil (Saudi Aramco) | Krivokapic, Alexander (Institutt for Energiteknikk) | Dye, Christian (Institutt for Energiteknikk) | Dugstad, Øyvind (Restrack) | Hartvig, Sven K. (Restrack) | Huseby, Olaf K. (Restrack)

OnePetro 

Summary

The single-well chemical-tracer test (SWCTT) is an in-situ test to measure oil saturation, and has been used extensively to assess the potential for enhanced oil recovery (EOR) or to qualify particular EOR chemicals and methods. An SWCTT requires that a primary tracer be injected and that a secondary tracer be generated from the primary tracer in situ. Typically, a few hundred liters of ester is injected as primary tracer, and the secondary tracer is formed through hydrolysis in the formations. The ester is an oil/water-partitioning tracer, whereas the in-situ-generated alcohol is a water tracer. During production, these tracers separate and the time lag of the ester vs. the alcohol is used to estimate oil saturation in the near-well region.

In this paper, we report a field test of a class of new reacting tracers for SWCTTs. In the test, approximately 100 cm3 of each of the new tracers was injected and used to assess oil saturation. In the test, ethyl acetate (EtAc) was used as a benchmark to verify the new tracers. This paper reviews the design and implementation of the test, highlights operational issues, provides a summary of the analyzed tracer curves, and gives a summary of the interpretation methodology used to find oil saturations from the tracer curves. Briefly summarized, we find the Sor measured by each of the novel tracers to compare with that from a conventional SWCTT. To validate stability and detectability of the tracers, a mass-balance assessment for the new tracers is compared with that of the conventional tracers.

A benefit of the new tracers is the small amount needed. Methodological advantages resulting from using small amounts include the possibility to inject a mix of several tracers. Using several tracers with different partitioning coefficients enables probing of different depths of the reservoir. In addition, the robustness of SWCTTs can be increased by using several tracers, with different reaction rates and temperature sensitivity. The field trial also demonstrated that the new tracers have operational advantages. One benefit is the possibility to inject the new tracers as a short pulse of 10 minutes. Other benefits are that the small amounts needed reduce operational hazards and ease logistical handling.