Impact of Different Cleaning Methods on Petrophysical Measurements

Gupta, Ishank (University of Oklahoma) | Rai, Chandra (University of Oklahoma) | Tinni, Ali (University of Oklahoma) | Sondergeld, Carl (University of Oklahoma)



The Gas Research Institute (GRI) conducted pioneering work on measuring shale petrophysical properties in the 1990s, however, despite growing interest in shales, there are still no set standards with respect to obtaining core petrophysical measurements due to the inherent complexity of shales. Core cleaning is one aspect of this problem.

The objective of this study is to shed some light on the shale core-cleaning conundrum. The study shows the cleaning impact of different solvents on samples from different maturity windows and having different in-situ fluids. It also compares the cleaning efficiency between plug and powdered samples. Different cleaning apparatus, such as the high-pressure extractor (HPE) and the Soxhlet extractor, are also compared.

Different measurements, such as source-rock analysis (S1 and S2 values); gas chromatography-mass spectrometry (GC-MS) extraction analysis; Brunauer-Emmett-Teller (BET) surface area and pore-size distribution help to understand the dynamics of core cleaning. This study was carried out on samples from the Wolfcamp and Eagle Ford formations.

Cleaning has a major impact on various petrophysical properties like porosity (increases up to 50%), S1 (decreases up to 90%) and surface area (increases by 450%). This study showed that cleaning time is a function of maturity and sample state. Samples in the oil-maturity window are much more difficult to clean compared to the samples in the gas-maturity window. Similarly, plug samples are more difficult to clean compared to the crushed samples. Our study shows that toluene, dichloromethane (DCM) and chloroform have similar cleaning efficiencies but n-heptane is less efficient.


Coring is an integral part of any exploration program. The planning for a coring program, coring fluids and corehandling procedures at the wellsite are all very important for preserving the core and getting accurate measurements in the laboratory.