Fractured Basement Characterization: An Integrated Approach for Play to Prospect Analysis and Resource Assessment of Basement Plays

Singh, Manish Kumar (Schlumberger) | Dubey, Siddharth (Schlumberger) | Chakraborty, Subrata (Schlumberger)

OnePetro 

This paper presents a multidomain integrated workflow that combines geophysics, borehole geology, fracture modeling, and petroleum systems analysis for characterization and resource assessment of basement plays. A 3D fracture model is developed by integrating image log interpretation and seismic data to assess the reservoir potential of fractured basement. The 3D fracture modeling is done using the discrete fracture network (DFN) approach with image log interpretation and other fracture drivers serving as the main input. The DFN is upscaled to generate fracture porosity and fracture permeability properties in a 3D grid. The upscaled fracture porosity is used to estimate the petroleum initially in place (PIIP) for the prospects. Multiple 2D petroleum system modeling is performed where large fault throws are identified from seismic interpretation. The petroleum system study helps in identification of areas with most prolific hydrocarbon generation and expulsion centers, which, coupled with the cross-fault juxtapositions, are the main locales of charging for basement reservoir. Further analysis of all the elements of basement play (i.e., source, reservoir, seal, trap, and migration) is done, and prospective areas within the basement play are delineated with high geological chance of success.