Water Injection in Deepwater, Over-Pressured Turbidites in the Gulf of Mexico: Past, Present, and Future

Duan, Shengkai (Chevron Corporation) | Lach, Joseph R (Knowledge Reservoir) | Beadall, Kris K (Knowledge Reservoir) | Li, Xin (Knowledge Reservoir)

OnePetro 


Waterflooding can supply additional reservoir energy for producing substantial quantities of oil trapped due to limited displacement drive and poor sweep efficiency. However, water injection is not commonly used in the deepwater Gulf of Mexico (DW GoM) due to good primary recovery, drilling cost and facility limitations. In over 80 fields and 450 reservoirs, water injection program has been implemented in only 18 reservoirs in 13 fields, or less than 5% of potential waterflooding candidates.
DW GoM mid-Miocene reservoirs are characterized by sparse well counts, over-pressured, and generally good rock and fluid properties. Rock compaction and moderate aquifer influx often provide moderate to good natural drive energy and oil recovery. Primary oil recovery averages 32% with the 80% confidence range between 16% and 48%. However, Paleogene reservoirs are characterized by deeper depth, high pressure, high temperature, complex geology, and rock and fluid properties. Estimated recoverable oil is only 10% of OOIP assuming primary production and limited natural drive energy. Water injection programs will be difficult to execute in tight, abnormally-pressured Paleogene reservoirs. Waterflooding of deepwater turbidites has accumulated many lessons and learns now, and a comprehensive understanding of the influence of depositional environment and injection into over-pressured, highly compacting rocks is necessary. This paper is a detailed examination of Pleistocene-to-Upper Miocene age turbidite reservoirs in the DW GoM under water injection. Issues on waterflooding these deepwater plays were reviewed in the context of geological setting and depositional environment. Despite many drawbacks that tend to oppose the implementation of a waterflooding in Paleogene reservoirs, this paper still proves that they are candidates for water injection programs under the rules of good production practice. Moderate oil recovery is suggested in highly compacting reservoirs with supplemental injection drive. Overall, waterflooding strategies have proven to be highly effective in achieving good incremental oil recovery from the deepwater Gulf of Mexico reservoirs.

  Country: North America > United States (1.00)
  Geologic Time: Phanerozoic > Cenozoic > Neogene > Miocene (1.00)
  Industry: Energy > Oil & Gas > Upstream (1.00)
  Oilfield Places: