C-S-H-PCE Nanofoils: A New Generation of Accelerators for Oil Well Cement

Plank, Johann (Technische Universität München) | Echt, Timon (Technische Universität München)



The goal was to search for a replacement of CaCl2 which presents the most widely used accelerator for oil well cement used in cold and arctic environments and sometimes in deepwater drilling. For this purpose, novel calcium silicate hydrate (C-S-H) nanoparticles were synthesized and tested. The C-S-H was synthesized by the precipitation method in an aqueous solution of polycarboxylate (PCE) comb polymer which is widely used as concrete superplasticizer. The resulting C-S-H-PCE suspension was tested in the UCA instrument as seeding material to initiate the crystallization of cement and thus accelerate cement hydration as well as shorten the thickening time at low temperature. It was found that in PCE solution, C-S-H precipitates first as nano-sized droplets (Ø ~20 - 50 nm) exhibiting a PCE shell. Following a rare, non-classical nucleation mechanism, the globules convert slowly to nanofoils (HR TEM images: l ~ 50 nm, d ~ 5 nm) which present excellent seeding materials for the formation of C-S-H from the silicate phases C3S/C2S present in cement. Thickening time tests performed at + 4 °C in an atmospheric consistometer revealed stronger acceleration than from CaCl2 while very low slurry viscosity was maintained, as was evidenced from rheological measurements. Accelerated strength development was checked on UCA cured at + 4 °C and under pressure, especially the wait on cement time was significantly reduced. Furthermore, combinations of C-S-H-PCE and HEC as well as an ATBS-based sulfonated fluid loss polymer were tested. It was found that this C-S-H- based nanocomposite is fully compatible with these additives. The novel accelerator based on a C-S-H-PCE nanocomposite solves the problems generally associated with CaCl2, namely undesired viscosity increase, poor compatibility with other additives and corrosiveness against steel pipes and casing.