Best Practices for Laboratory Evaluation of Immiscible WAG

Itriago, Yani C. Araujo de (SGS North America) | Araujo, Mariela (Researcher) | Molinaris, John (SGS North America)



Immiscible Water Alternating Gas (IWAG) is an EOR process whereby water and immiscible gas are alternately injected into a reservoir to provide better sweep efficiency and reduce gas channelling from injectors to producer wells, aiming to stabilize the displacement front and increase contact with the unswept areas of the reservoir. In this work, we present a summary of best practices for laboratory evaluation of IWAG. This work was motivated by observations related to the way laboratory measurements are normally done, which could result in erroneous interpretation if the results were to be used directly for the design of a field application.

The set of best practices were collected from own work expanding over two decades of laboratory work, discussion with experts from laboratory services and research centres, and a comprehensive literature review. They were tested in a laboratory workflow and compared to conventional workflows used by most laboratories. The recommended approach covers steps from sample preparation, experimental setup, measurement protocols, guideline for process design, and data QA/QC for later use in reservoir simulation.

Among the best practices, particular attention is given to the type of fluids and samples used for the measurements based on the strong effect of rock-fluid interactions on the IWAG performance. The layout of the experimental setup, and how the injection and displacement process is done and the flow effects quantified. Other best practices relate to the selection of the WAG slug ratio, and required initial conditions of the core where the laboratory testing is done. The number of cycles in the WAG injection affects the recovery. On the initial condition of the sample, the knowledge of the sample wettability at the start of the WAG is critical since the optimum ratio is influenced by the wetting state of the rock. A WAG ratio of 1:1, which is the most popular in field applications, is not necessarily the most appropriate.

Regarding flow properties, relative permeability should be evaluated under three-phase conditions and making sure hysteresis effects are well captured data in general not readily available. Special attention should be given to the selection of correlations for calculating three-phase relative permeability widely reported in the literature; in most cases they are not accurate for WAG injection since they do not consider special treatment of water-gas cycle.

We present a side by side comparison of the impact on the laboratory results will be given on using recommended best practices to more routine laboratory implementations. These best practices, with focus on immiscible WAG, provide a new unique workflow for the execution of laboratory programs supporting a better understanding of the involved phenomena and providing accurate data for immiscible WAG process design.