PEH:Properties of Produced Water - PetroWiki

Petrowiki 

Early U.S. settlements commonly were located near salt lakes that supplied salt to the population. These salt springs were often contaminated with petroleum, and many of the early efforts to acquire salt by digging wells were rewarded by finding unwanted amounts of oil and gas associated with the saline waters. In the Appalachian Mountains, saline water springs commonly occur along the crests of anticlines.[1] In 1855, it was found that petroleum distillation produced light oil that was, as an illuminant, similar to coal oil and better than whale oil.[2] This knowledge spurred the search for saline waters containing oil. With the methods of the salt producers, Colonel Edward Drake drilled a well on Oil Creek, near Titusville, Pennsylvania, in 1859. He struck oil at a depth of 70 ft, and this first oil well produced approximately 35 B/D.[3] Early oil producers did not realize the significance of the oil and saline waters occurring together. In fact, it was not until 1938 that the existence of interstitial water in oil reservoirs was generally recognized.[4] Torrey[5] was convinced by 1928 that dispersed interstitial water existed in oil reservoirs, but his colleagues rejected his belief because most of the producing wells did not produce any water on completion. Occurrences of mixtures of oil and gas with water were recognized by Griswold and Munn,[6] but they believed that there was a definite separation of the oil and water, and that oil, gas, and water mixtures did not occur in the sand before a well tapped a reservoir. It was not until 1928 that the first commercial laboratory for the analysis of rock cores was established, and the first core tested was from the Bradford third sand (Bradford field, McKean County, Pennsylvania). The percent saturation and percent porosity of this core were plotted vs. depth to construct a graphic representation of the oil and water saturation. The soluble mineral salts that were extracted from the core led Torrey to suspect that water was indigenous to the oil-productive sand. Shortly thereafter, a test well was drilled near Custer City, Pennsylvania, that encountered greater than average oil saturation in the lower part of the Bradford sand. This high oil saturation resulted from the action of an unsuspected flood, the existence of which was not known when the location for the test well had been selected. The upper part of the sand was not cored. Toward the end of the cutting of the first core with a cable tool, core barrel oil began to come into the hole so fast that it was not necessary to add water for the cutting of the second section of the sand. Therefore, the lower 3 ft of the Bradford sand was cut with oil in a hole free from water.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found