PEH:Reservoir Simulation - PetroWiki

Petrowiki 

Any reservoir simulator consists of n m equations for each of N active gridblocks comprising the reservoir. These equations represent conservation of mass of each of n components in each gridblock over a timestep Δt from tn to tn 1. The first n (primary) equations simply express conservation of mass for each of n components such as oil, gas, methane, CO2, and water, denoted by subscript I 1,2,…, n. In the thermal case, one of the "components" is energy and its equation expresses conservation of energy. An additional m (secondary or constraint) equations express constraints such as equal fugacities of each component in all phases where it is present, and the volume balance Sw So Sg Ssolid 1.0, where S solid represents any immobile phase such as precipitated solid salt or coke. There must be n m variables (unknowns) corresponding to these n m equations. There are m 2n 1 constraint equations consisting of the volume balance and the 2n equations expressing equal fugacities of each ...

  Industry: Energy > Oil & Gas > Upstream (1.00)