In Petroleum Data Analytics, Artificial Intelligence Avoids the Black Box

Journal of Petroleum Technology 

Introduction Petroleum data analytics is a solid engineering application of data science in petroleum-engineering-related problems. The engineering application of data science is defined as the use of artificial intelligence and machine learning to model physical phenomena purely based on facts (e.g., field measurements and data). The main objective of this technology is the complete avoidance of assumptions, simplifications, preconceived notions, and biases. One of the major characteristics of petroleum data analytics is its incorporation of explainable artificial intelligence (XAI). While using actual field measurements as the main building blocks of modeling physical phenomena, petroleum data analytics incorporates several types of machine-learning algorithms, including artificial neural networks, fuzzy set theory, and evolutionary computing.

Duplicate Docs Excel Report

None found

Similar Docs  Excel Report  more

None found