The SPE has split the former "Management & Information" technical discipline into two new technical discplines:
- Management
- Data Science & Engineering Analytics
Journal
Conference
Publisher
Theme
Author
Concept Tag
Source
File Type
The SPE has split the former "Management & Information" technical discipline into two new technical discplines:
Layer | Fill | Outline |
---|
Theme | Visible | Selectable | Appearance | Zoom Range (now: 0) |
---|
Fill | Stroke |
---|---|
Zeynalli, Mursal (Petroleum Engineering Department, Khalifa University of Science and Technology, SAN Campus (Corresponding author)) | Al-Shalabi, Emad Walid (Petroleum Engineering Department, Khalifa University of Science and Technology, SAN Campus) | AlAmeri, Waleed (Petroleum Engineering Department, Khalifa University of Science and Technology, SAN Campus)
Summary Polymer flooding is one of the most commonly used chemical enhanced oil recovery (EOR) methods. Conventionally, this technique was believed to improve macroscopic sweep efficiency by sweeping only bypassed oil. Nevertheless, recently it has been found that polymers exhibiting viscoelastic behavior in the porous medium can also improve microscopic displacement efficiency resulting in higher additional oil recovery. Therefore, an accurate prediction of the complex rheological response of polymers in porous media is crucial to obtain a proper estimation of incremental oil to polymer flooding. In this paper, a novel viscoelastic model is proposed to comprehensively analyze the polymer rheological behavior in porous media. This proposed model was developed and validated using 30 coreflooding tests obtained from the literature and further verified against a few existing viscoelastic models. The proposed viscoelastic model is considered an extension of the unified apparent viscosity model provided in the literature and is termed as extended unified viscoelastic model (E-UVM). The main advantage of the proposed model is its ability to capture the polymer mechanical degradation at ultimate shear rates primarily observed near wellbores. Moreover, the fitting parameters used in the model were correlated to rock and polymer properties using machine learning technique, significantly reducing the need for time-consuming coreflooding tests for future polymer screening works. Furthermore, the E-UVM was implemented in MATLAB Reservoir Simulation Toolbox (MRST) and verified against the original shear model existing in the simulator. It is worth mentioning that the irreversible viscosity drop for mechanical degradation regime was captured during implementing our model in the simulator. It was found that implementing the E-UVM in MRST for polymer non-Newtonian behavior might be more practical than the original method. In addition, the comparison between various viscosity models proposed earlier and E-UVM in the reservoir simulator showed that the latter model could yield more reliable oil recovery predictions as the apparent viscosity is modeled properly in the mechanical degradation regime, unlike UVM or Carreau models. This study presents a novel viscoelastic model that is more comprehensive and representative as opposed to other models in the literature. Furthermore, the need to conduct an extensive coreflooding experiment can be reduced by virtue of developed correlations that may be used to estimate model fitting parameters accounting for shear-thickening and mechanical degradation.
Abstract Polymer flooding is one of the most commonly used chemical EOR methods. Conventionally, this technique was believed to improve macroscopic sweep efficiency by sweeping only bypassed oil. Nevertheless, recently it has been found that polymers exhibiting viscoelastic behavior in the porous medium can also improve microscopic displacement efficiency resulting in higher additional oil recovery. Therefore, an accurate prediction of the complex rheological response of polymers is crucial to obtain a proper estimation of incremental oil to polymer flooding. In this paper, a novel viscoelastic model is proposed to comprehensively analyze the polymer rheological behavior in porous media. The proposed viscoelastic model is considered an extension of the unified apparent viscosity model provided in the literature and is termed as extended unified viscosity model (E-UVM). The main advantage of the proposed model is its ability to capture the polymer mechanical degradation at ultimate shear rates primarily observed near wellbores. Furthermore, the fitting parameters used in the model were correlated to rock and polymer properties, significantly reducing the need for time-consuming coreflooding tests for future polymer screening works. Moreover, the extended viscoelastic model was implemented in MATLAB Reservoir Simulation Toolbox (MRST) and verified against the original shear model existing in the simulator. It was found that implementing the viscosity model in MRST might be more accurate and practical than the original method. In addition, the comparison between various viscosity models proposed earlier and E-UVM in the reservoir simulator revealed that the latter model could yield more reliable oil recovery predictions since it accommodates the mechanical degradation of polymers. This study presents a novel viscoelastic model that is more comprehensive and representative as opposed to other models in the literature.
Zeynalli, Mursal (Khalifa University of Science and Technology) | Alfazazi, Umar (Khalifa University of Science and Technology) | Mushtaq, Muhamad (Khalifa University of Science and Technology) | W. Al-Shalabi, Emad (Khalifa University of Science and Technology) | AlAmeri, Waleed (Khalifa University of Science and Technology)
Abstract Polymer flooding is a well-established chemical enhanced oil recovery (CEOR) technique that effectively improves oil recovery after waterflooding. Due to a large number of studies conducted in this area and extensive field data availability, this technique has gained solid practical and theoretical knowledge. Conventionally, the polymer injection is believed to increase volumetric sweep efficiency by producing movable oil that is remained unswept after waterflooding. Nevertheless, studies demonstrated that specific viscoelastic polymers might also mobilize residual oil and improve microscopic displacement efficiency, in addition to macroscopic sweep efficiency. Although polymer flooding is an extensively applied CEOR technique in sandstones, its applicability in carbonates is still limited. This is related to the prevailing complicated conditions in carbonates including mixed-to-oil wettability nature, high heterogeneity with low permeability, and harsh conditions of high temperatures (above 85°C), high salinity (above 100,000 ppm), and high hardness (above 1,000 ppm). Recently, new polymers have been developed to overcome the challenges of harsh conditions in carbonates. These novel polymers incorporate specific monomers that protect the polymer from thermal and chemical degradations. However, the viscoelasticity of these synthetic polymers and their effect on oil mobilization are not yet comprehended and requires further investigation and research. In this paper, we review the recent studies conducted on viscoelastic polymer flooding in sandstones and carbonates. The article describes viscoelastic polymer recovery mechanisms, polymer viscoelastic properties and the factors controlling them, and the effect of viscoelastic polymers on residual oil mobilization. This study also provides insights into the challenges faced during viscoelastic polymer flooding operations as well as field applications in sandstone and carbonate reservoirs.
Summary Since the late 1960s, several enhanced–oil–recovery (EOR) researchers have developed various continuum and pore–scale viscoelastic models for quantifying the altered injectivity and incremental oil recovery because of the polymer's viscoelastic effects. In this paper, limitations in each of the continuum and pore–scale models are discussed. The critiques are made on the basis of the contradicting literature. Most of the earlier models rely on the exclusive use of the Deborah number to quantify the viscoelastic effects. The Deborah number overlooks mechanical–degradation effects. There exists a large difference in the magnitudes of the reported Deborah number in the literature because of the inconsistency in using different relaxation time and residential time. Oscillatory relaxation time used by most of the EOR researchers to calculate the Deborah number failed to distinguish the different porous–media behavior of the viscous and viscoelastic polymer. Therefore, the accuracy of relaxation time obtained from the weak oscillatory field for EOR applications in porous media is questionable. The main limitation with all the existing continuum viscoelastic models is the empirical reliance on coreflood data to predict the shear–thickening effects in porous media. The strain hardening index, needed for quantifying the thickening regime, cannot be obtained by the conventional shear rheological techniques. The conventional capillary number (Nc) failed to explain the reduction in residual oil saturation () during viscoelastic polymer flooding. Pore–scale viscoelastic models use the conventional oscillatory Deborah number for quantifying the polymer's viscoelastic effects on Sor reduction. However, this approach has many drawbacks. Discussions on the shortcomings of the existing viscoelastic models caution the current chemical EOR (cEOR) researchers about their applications and potential consequences. Also, this research provides a path forward for future research to address the limitations associated with the quantification of viscoelastic flow through porous media.
Abstract Polymer flooding is one of the well-established and commercially-available techniques for enhanced oil recovery in the petroleum industry. It is the most widely adopted chemical enhanced oil recovery technique in sandstones, but its application in carbonates is limited due to the harsh reservoir conditions of high temperature, high salinity, and low permeability. However, research is advancing to expand the applicability of this technique to carbonate reservoirs in a cost effective manner. In this paper, we present a comprehensive review on polymer flooding for carbonates under harsh conditions. This review includes descriptions of underlying mechanisms, polymer types, polymer screening studies, coreflood laboratory work, numerical and modeling works, and field applications. Screening of new polymers for potential field applications is also discussed. In addition, polymer rheology and challenges posed to polymer flow in the porous media are described. Moreover, summary tables of different monomers used to tailor polymers for harsh conditions as well as temperature and salinity limits of different polymers are provided, which makes this review as a guidance for implementing new projects using the polymer flooding technique. The literature review conducted shows that with the recent technology, a field-scale application of polymer flooding in carbonate reservoirs is possible. Several polymer types have been recently developed to overcome harsh carbonate conditions of high temperature, high salinity, and low permeability. This is encouraging towards conducting pilots in carbonate reservoirs in a cost effective manner. At the end of this paper, recommendations to overcome the challenges of high temperature, high salinity/hardness, and poor injectivity are provided based on this vast literature review and our experiences in polymer flooding. This paper gives more insight into polymer flooding aspects and its different applications in the oil industry. In addition, the study is considered as a guide for starting or implementing potential projects on polymer flooding in carbonate reservoirs under harsh conditions.