**Current Filters**

**Source**

**SPE Disciplines**

**Conference**

**Publisher**

**Author**

**Concept Tag**

- carbonate reservoir (1)
- correlation (1)
- distribution (1)
- effect (1)
- equation (1)
- factor (2)
- Figure (2)
- Flow (4)
- flow assurance (1)
- flow in porous media (1)
- flow line (1)
- flow regime (3)
- Fluid Dynamics (2)
- formation evaluation (6)
- fracture (3)
- Horizontal (4)
- horizontal permeability (1)
- horizontal well (5)
- interval (1)
- length (1)
- line (1)
- LpD (1)
- LSD (1)
- machine learning (1)
- model (1)
- number (2)
- oilfield chemistry (1)
- parameter (1)
- partially (1)
- peak point (1)
- perforation zone (1)
- permeability (1)
- permeability relationship (1)
- porosity (1)
- pressure (1)
- pressure behavior (3)
- pressure transient testing (4)
- problem (1)
- produced water (1)
- production control (5)
- production logging (4)
- production monitoring (5)
- productivity (1)
- productivity index (1)
- radial flow (4)
- relationship (1)
- reservoir simulation (6)
- sand (1)
- sand production (1)
- sandstone (1)
- sandstone case (1)
- Sandstone Reservoir (1)
- section (1)
- section infinite reservoir (1)
- shale gas (1)
- shaly formation (1)
- shape factor (1)
- shape factor group (1)
- society of petroleum engineers (1)
- SPE (3)
- STEP (1)
- time (2)
- waterflooding (1)
- well logging (2)
- wellbore (3)
- wellbore storage (1)
- xfD (1)
- zone (2)

**Industry**

**Oilfield Places**

**Technology**

Asphaltic and sand production problems are common production challenges in the petroleum industry. Asphaltic problem results from the depositions of heavy material (asphaltene) in the vicinity of the well which may cause severe formation damage. Asphaltic materials are expected to deposit in all type of reservoirs. Sand production refers to the phenomenon of solid particles being produced together with the petroleum fluids. These two problems represent a major concern in oil and gas production systems either in the wellbore section or in the surface treatment facilities. Production data, well logging, laboratory testing, acoustic, intrusive sand monitoring devices, and analogy are different techniques used to predict sand production. This paper introduces a new technique to predict and quantify the skin factor resulting from asphaltene deposition and/or sand production using pressure transient analysis.

Pressure behavior and flow regimes in the vicinity of horizontal wellbore are extremely influenced by this skin factor. Analytical models for predicting this problem and determining how many zones of the horizontal well that are affected by sand production or asphaltic deposition have been introduced in this study. These models have been derived based on the assumption that wellbore can be divided into multi-subsequent segments of producing and non-producing intervals. Producing intervals represent free flowing zones while non producing intervals represent zones where perforations are closed because of sand or asphaltic deposits.

The effective length of the segments of a horizontal well where sand and/or asphaltene are significantly closing the perforations can be calculated either from the early radial or linear flow. Similarly, the effective length of the undamaged segments can be determined from these two flow regimes. The numbers of the damaged and undamaged zones can be calculated either from the intermediate radial (secondary radial) or linear flow if they are observed. If both flow regimes are not observed, the zones can be calculated using type curve matching technique. The paper will include the main type-curves, step-by-step procedure for interpreting the pressure test without using type curve matching technique when all necessary flow regimes are observed. A step-by-step procedure for analyzing pressure tests using the type-curve matching technique will also be presented. The procedure will be illustrated by several numerical examples.

Figure, Flow, flow assurance, flow regime, formation evaluation, Horizontal, horizontal well, LpD, LSD, perforation zone, pressure transient testing, production control, production logging, production monitoring, radial flow, reservoir simulation, sand, sand production, section infinite reservoir, well logging, wellbore, zone

Oilfield Places:

SPE Disciplines: Reservoir Description and Dynamics > Formation Evaluation & Management > Drillstem/well testing (1.00)

The reliability of the estimated parameters in well test analysis depends on the accuracy of measured data. Early time data are usually controlled by the wellbore storage effect. However, this effect may last for the pseudo-radial flow or the boundary dominated flow. Eliminating this effect is an option for restoring the real data. Using the data with this effect is another option that can be used successfully for reservoir characterization.

This paper introduces a new technique for interpreting the pressure behavior of horizontal wells and fractured formations with wellbore storage. A new analytical model describes the early time data has been derived for both horizontal wells and horizontal wells intersecting multiple hydraulic fractures. Several models for the relationships of the peak points with the pressure, pressure derivative and time have been proposed in this study for different wellbore storage coefficients. A complete set of type curves has been included for different wellbore lengths, skin factors and wellbore storage coefficients. The study has shown that early radial flow for short to moderate horizontal wells is the most affected flow regime by the wellbore storage. For long horizontal wells, the early linear flow is the most affected flow regime by the wellbore storage effect.

The most important finding in this study is the ability to run a short test and use the early time data only for characterizing the formation. This means there is no need to run a long time test to reach the pseudo-steady state. Therefore, from the wellbore storage dominated flow, the early radial and pseudo-radial flow can be established for horizontal wells and hydraulic fractured formations. A step-by-step procedure for analyzing pressure tests using the analytical models (TDS) and the type curves is also included in this paper for several numerical examples.

SPE Disciplines: Reservoir Description and Dynamics > Formation Evaluation & Management > Drillstem/well testing (1.00)

Productivity index and inflow performance of horizontal wells intersecting multiple hydraulic fractures are of great importance. This importance comes from the fact that the fracturing process has become a common stimulation technique in the petroleum industry. However, few models for the productivity index and inflow performance have been presented in the literatures due to the complexity governing this topic.

This paper introduces a new technique for estimating the pseudo-steady state productivity index of horizontal wells intersecting multiple hydraulic fractures. Based on the instantaneous source solutions for the diffusivity equation, seven analytical models have been derived for different source solutions. Four of them represent the effect of the formation height and fracture height (the vertical direction), while the other three represent the solution for the horizontal plane. For vertical hydraulic fractures, the four solutions of the vertical direction, representing the pseudo-skin factor, are almost neglected. The three horizontal plane solutions are the main parameters that control the productivity index and inflow performance of the fractured formations. In this technique, the horizontal wells are acting in finite reservoirs where the pseudo-steady state flow is expected to develop. Reservoir geometry, reservoir properties, and fracture dimensions were considered in this technique. The number of fractures and the spacing between them were also investigated in this study. A new analytical model for estimating the required number of hydraulic fractures has been introduced in this study based on the reservoir drainage area and the surface area of fractures.

The models have been used to establish several plots to estimate the shape factor group based on the number of fractures and the half fracture length. This group is one of the main terms in the productivity index model. Several plots for the shape factor of fractured formations have been introduced in this study. The results obtained from the new technique have been compared with the results from previous models. Several numerical examples will be included in the paper.

SPE Disciplines:

Closed perforations and damaged sections are two great challenges in the petroleum industry. Several reasons may cause these problems. Few of them depend on the type of formation and wellbore while others come from drilling, completion and stimulation activates before production process. Production rate and pressure drop may lead significantly to these two problems; therefore, production management sometimes plays great role in controlling them. Millions of dollars are spent annually for the remedial process of these two problems. Therefore the prediction of them is considered of great importance as an attempt to control them or reduce their negative impact on wellbore deliverability.

This paper introduces a new technique to predict closed perforations and damaged sections problems using pressure transient analysis. Pressure behaviors and flow regimes in the vicinity of horizontal wellbores are affected by the existence of the closed perforated zones and the formation sections where the resistance to reservoir fluid flow toward the wellbore is maximized. This resistance occurs because of the damaged permeability and high skin factor. Analytical models for predicting these problems and determining how many zones of the horizontal well that are considerably affected by them have been introduced in this study. These models have been derived based on the assumption that wellbore can be divided into multi-subsequent segments of producing and non-producing intervals. Producing intervals represent free flowing zones where there is no problem and both formation and wellbore are assumed to be clean. Non-producing intervals represent zones where both formation and wellbore's perforations are closed or damaged.

The effective length of horizontal well where the perforated zones and the formation sections can not be considered problematic and the damaged length where both of them are significantly closed and damaged can be calculated. The numbers of the damaged zones can be calculated also. In addition, the locations of the damaged sections or closed perforated zones can be determined. Type-curve matching technique and the analytical models can be used for this purpose.

doi: 10.2118/161000-MS

SPE-161000-MS

factor, Flow, flow regime, formation evaluation, Horizontal, horizontal well, interval, length, number, oilfield chemistry, pressure behavior, pressure transient testing, problem, production control, production logging, production monitoring, radial flow, reservoir simulation, section, waterflooding, wellbore, zone

One of the important petrophysical parameter in reservoir description is the permeability distribution in a given reservoir. It is well known that most reservoir are heterogeneous in nature and homogeneous ones being the few exceptions. Therefore, most reservoirs exist with different degree of permeability anisotropy and reservoir heterogeneity.

This work investigates the relationship between vertical and horizontal permeability in sandstone reservoirs. Various petrophysical properties were estimated from core and log data obtained from a Niger-Delta sandstone reservoir. New and improved correlations between vertical permeability, horizontal permeability, effective porosity and shale fraction were developed for the zones that were analyzed.

These correlations show that there is a strong relationship between vertical permeability, horizontal permeability, effective porosity, and shale fraction for the different zones that were analyzed and that these correlations are affected by the number of flow units in each zone.

carbonate reservoir, correlation, distribution, equation, Figure, formation evaluation, Horizontal, horizontal permeability, parameter, permeability, permeability relationship, porosity, relationship, reservoir simulation, sandstone, sandstone case, Sandstone Reservoir, shaly formation, society of petroleum engineers, SPE, well logging

Horizontal wells with multiple hydraulic fractures have been used widely in the oil and gas industry. In published literatures, hydraulic fractures are assumed to be fully penetrating the formations. Recent studies have shown that partially penetrating fractures are more likely to occur rather than fully penetrating fractures

The purpose of this study is to formulate an analytical model describing the pressure behavior of a horizontal well with partially penetrating hydraulic fractures. This model is used to develop a technique, based on pressure and pressure derivative concept, for interpreting pressure transient tests and forecasting productivity of the well. The fractures in this study were assumed to propagate in an infinite homogenous porous system. Further more, the fractures were assumed to be vertical and inclined. Six main flow regimes can be observed for hydraulic fractures: linear, early radial, second linear, intermediate radial, third linear or elliptical and pseudo-radial flow. Early radial flow represents the radial flow around each fracture may develop for the cases of small penetrating rate. Intermediate radial flow is expected to develop for the case of wide spacing between fractures. Third linear flow may develop for the case of high number of fracture with short spacing between them.

Tiab's Direct Synthesis (TDS) technique has been applied using the plots of the pressure and pressure derivative curves. Several unique features of the pressure and pressure derivative plots of partially penetrating fractures models were identified including the points of intersection of straight lines for different flow regimes. These points can be used to verify the results or to calculate unknown parameters. Equations associated with these features were derived and their usefulness was demonstrated. A step-by-step procedure for analyzing pressure tests is included in this paper and illustrated by several numerical examples.

doi: 10.2118/153788-MS

SPE-153788-MS

Flow, flow in porous media, flow line, flow regime, Fluid Dynamics, formation evaluation, fracture, horizontal well, machine learning, partially, pressure behavior, pressure transient testing, production control, production logging, production monitoring, radial flow, reservoir simulation, SPE, STEP, time

SPE Disciplines: