**Current Filters**

**Source**

**Conference**

**Publisher**

**Theme**

**Author**

- Akerberg, Peeter (1)
- Alves, Gustavo Catao (1)
- Bulcao, Andre (1)
- Burns, D.R. (1)
- Chen, Xiaochong (1)
- Cole, Jeff (1)
- Costagliola, Sathya (1)
- de Matos, Marcílio Castro (1)
- De Meersman, Kristof (1)
- Dellinger, Joe (1)
- Donno, Daniela (1)
- Dragoset, Bill (1)
- Eke, Daniel (1)
- Filho, Djalma Manoel Soares (1)
- Gao, Jianjun (1)
- Gibson, Richard L. (1)
- Grion, Sergio (1)
- Guimaraes, Marcos Antonio Galloti (1)
- Hampson, Gary (2)
- Haney, Matthew M. (1)
- House, N.J. (1)
- Jack, Ian (1)
- Johann, Paulo (1)
- Landais, Michael (1)
- Li, Jingye (1)
- Liu, Jiangping (1)
- Liu, Qingsheng (1)
- Loinger, Eugenio (1)
- Luke, Barbara (1)
- Luo, Yinhe (1)
- Macías, Carlos Calderón (1)
- Marfurt, Kurt J. (1)
- Martin, Harry (1)
- Mazzucchelli, Paolo (1)
- Mei, Jian (1)
- Miller, Richard D. (1)
- Moore, Ian (1)
- Musser, James (1)
- Ommundsen, Tor (1)
- Pica, Antonio (1)
- Rickett, James (1)
- Rocca, Fabio (1)
- Rosseto, Joao Adolfo (1)
- Santos, Luiz Alberto (1)
- ShaikMubarak, AbdulRahim (1)
- Shekhar, Ravi (1)
- Shemeta, J. (1)
- Simmons, Jim (1)
- Spitz, Simon (1)
- Theodoro, Carlos Eduardo (1)
- Titley, Paul (1)
- van Wijk, Kasper (1)
- Wang, Yi (1)
- Ward, Camille (1)
- Wei, Zhouhong (1)
- Willis, K.M. (1)
- Willis, M.E. (1)
- Wilson, David (1)
- Wu, Ru Shan (1)
- Xia, Jianghai (1)
- Xu, Yixian (1)
- Zhu, Xiaosan (1)

to

Go **Concept Tag**

- acquisition (7)
- Acquisition Configuration (1)
- acquisition footprint (1)
- adaptive dip-based subtraction (1)
- adaptive subtraction (1)
- advantage (1)
- ahv-iv vibrator (1)
- airgun (1)
- airgun energy (1)
- algorithm (4)
- amplitude (3)
- amplitude resolution (1)
- analysis (1)
- anisotropy (1)
- apparent attenuation (1)
- approach (1)
- array (1)
- arrival (1)
- Artificial Intelligence (4)
- Atlantis (1)
- azimuth (1)
- azimuth-sectored stack gather (1)
- beamlet (1)
- brazilian deep (1)
- Britannia field (1)
- Britannia OB (1)
- calibration (1)
- Calvert (1)
- carbonate (1)
- CMP line (1)
- CMP stack (1)
- Comparison (1)
- component (2)
- configuration (2)
- delay (2)
- DFN (1)
- displacement (2)
- distribution (2)
- Earthquake (1)
**energy (20)**- equation (6)
- estimate (3)
- fracture (2)
- frequency (5)
- function (2)
- geometry (2)
- geophysics (4)
- Haney (1)
- hydraulic fracturing (2)
- image (2)
- Imaging (1)
- input (2)
- interface (2)
- interference (2)
- inversion (2)
- las vegas (2)
- LOC (1)
- location (2)
- method (5)
- migration (2)
- model (4)
- noise (2)
- North Sea (1)
- Pattern Recognition (1)
- PEF (1)
- Polarization property (1)
- PZ calibration (1)
- radial (2)
- Rayleigh wave (1)
- receiver (3)
- reflector (2)
- Reservoir Characterization (20)
- reservoir description and dynamics (20)
- Rodney (1)
- Saudi Aramco (1)
- secondary source (2)
- seg las vegas (8)
- seismic processing and interpretation (20)
- separation (4)
- signal (3)
- source (7)
- Sparsity Constraint (1)
- Station (2)
- Stefani (1)
- streamer (2)
- surface (2)
- survey (2)
- technique (2)
- Upstream Oil & Gas (18)
- variation (2)
- Verschuur (1)
- VSP (1)
- Vsp Record (1)
- Wave (1)
- Wave Equation (1)
- wavefield (2)
- well completion (2)
- West Pearl Queen Field (1)
- window (2)
- Xia (1)

to

GoShear-wave splitting estimation and compensation (SEAC) removes the effects of shear-wave splitting from convertedwave data. A locally one-dimensional earth is assumed where a priori rotation of the field data to radial-transverse coordinates is valid. Subsurface fractures (HTI layers, for example) polarize converted-wave reflection energy onto the transverse component, and introduce azimuth-dependent traveltime variations to the radial component. SEAC estimates the fast principal direction of the fractures and the amount of traveltime splitting from input radial and transverse azimuthsectored stack gathers. A splitting-compensated radial dataset, and a data-misfit transverse component are output. Local fracture variations not accounted for in the relatively coarse layer stripping may be interpreted in the data misfit.

Artificial Intelligence, azimuth-sectored stack gather, compensation, component, energy, estimate, inversion, model, overburden, radial, radial component, Reservoir Characterization, reservoir description and dynamics, seac, seismic processing and interpretation, splitting, transverse, transverse azimuth-sectored, transverse component, traveltime, traveltime splitting, Upstream Oil & Gas, variation

SPE Disciplines: Reservoir Description and Dynamics > Reservoir Characterization > Seismic processing and interpretation (1.00)

Shallow buried heterogeneities act as diffractors to an incoming surface wave. Experimental and numerical analyses are conducted to analyze the problem and to propose a methodology for mapping shallowly embedded objects. A layered system having a high impedance contrast at the base containing shallowly buried drums is tested experimentally. Stacked maps of frequency, velocity and lateral position show the presence of the drums. A hypothesis is posed that the most significant impact of the shallow obstacle on the incident wavefield is diffraction of Rayleigh wave energy. Synthetic seismograms generated through numerical modeling support the hypothesis. The interpretation of the data is complicated by factors such as acquisition footprint and frequency content. These factors remain to be investigated.

array, energy, frequency, geophysics, incident, las vegas, location, radial, Rayleigh wave, receiver, Reservoir Characterization, reservoir description and dynamics, seg las vegas, seismic processing and interpretation, shallow heterogeneity, shallowly, source, south, Station, surface, surface wave, Upstream Oil & Gas, Wave

SPE Disciplines: Reservoir Description and Dynamics > Reservoir Characterization > Seismic processing and interpretation (1.00)

Acquisition footprint shown on seismic time and depth slice by periodic amplitude artifacts after seismic image is caused by infrequent sample determined by the roll array geometry, the source-receiver interval and line to line interval. The footprint is one of noises on the 3D seismic data volume from the surface geometry. It can cause false interpretation by making the stratal configuration regular variation change in seismic image. So, it is one of the worst factors affecting seismic acquisition accuracy. In the paper, the distribution rule of the source energy traveling to the interface and the reflection energy received by geophones at different locations is analyzed based on the Huygens- Fresnel theory. Then, the footprint produced in offshoreseismic towing streamer acquisition is simulated, and the effect of interface depth variation on the footprint is calculated.

acquisition, acquisition footprint, analysis, distribution, energy, footprint, footprint simulation, geometry, huygens-fresnel theory, interface, las vegas, offshore seismic tow-cable, reflector, Reservoir Characterization, reservoir description and dynamics, seismic acquisition, seismic image, seismic processing and interpretation, Upstream Oil & Gas, variation, wave field, worst factor

SPE Disciplines: Reservoir Description and Dynamics > Reservoir Characterization > Seismic processing and interpretation (1.00)

The ability to produce from low permeability, tight gas reservoirs is directly tied to the ability to repetitively perform successful hydraulic fracturing in a series of closely spaced wells. The key question is whether the induced fractures remain open and permeable, which is in part a function of the stress field and the emplacement of proppant. We study the ability to detect and characterize hydraulic fractures from scattered seismic energy. A 3D VSP forms the reference for seismic reflectivity before hydraulic fracturing. During the hydraulic fracturing the microseismic events are recorded and then the arrival times picked and the events located. Another 3D VSP survey is recorded after the fracture treatment. The difference between the VSP surveys yields a 3D time lapse VSP dataset which contains the changes in the reflected wavefield and the addition of scattered energy. The microseismic moveout times can be used to extract from the time lapse VSP data the seismic energy scattered from the induced fracture planes. We show the encouraging results from both model and field data.

arrival, energy, fracture, fracture plane, hydraulic fracture, hydraulic fracture quality, hydraulic fracturing, lapse, location, lower fracture, lower fracture plane, monitor well, plane, record, Reservoir Characterization, reservoir description and dynamics, seismic energy, seismic processing and interpretation, source, survey, treatment, Upstream Oil & Gas, VSP, Vsp Record, well completion

SPE Disciplines:

The term "simultaneous source" refers to the idea of firing several seismic sources so that their combined energy is recorded into the same set of receivers during a single conventional shotpoint timing cycle. The idea is to collect the equivalent of two or more shots worth of data in the same time as it takes to collect one. The potential advantages include cost or time savings in field acquisition, which is of renewed interest due to the popularity and expense of WATS data. We were motivated to the work presented here by observations made on a 3D dataset acquired over the Petronius field in the Gulf of Mexico with two source vessels. The second source was fired with a random delay compared to the first, so that the energy from secondary source is similar to asynchronous noise. While the random nature of the crosstalk in combination with the two known geometries had been enough to successfully apply relatively standard processing techniques for other studied datasets, we found that this one required an improvement on those techniques. This paper describes a high-resolution (sparse) Radonbased separation technique with that aim. We find that while the technique does not by itself do all the required separation, it sufficiently separates the data to allow subsequent standard noise attenuation techniques to complete the task.

A more detailed motivation for simultaneous source recording and several investigations of this idea can be found in (Beasley et al., 1998; de Kok and Gillespie, 2002; Stefani et al., 2007) and references therein. This work is based on the 3D data described by Stefani et al. (2007), which was collected over the Petronius field in the Gulf of Mexico with two sources. The second source was fired with a random delay compared to the first such that the arriving energy from both sources are recorded within a conventional shotpoint timing cycle. Due to the randomness of the delay the cross-talk between primary and secondary source energy is similar to asynchronous coherent noise, such as seismic interference, which can be expected to be fairly effectively attenuated by conventional stacking and migration procedures (Krey, 1987; Stefani et al., 2007).

As Beasley et al. (1998) describe, in order to reduce crosstalk between two sources in the final product beyond what is achieved by treating it as random noise, one can make explicit use of the fact that both sources are fired at known locations and known timing. The resulting distinct geometries of the two wavefields can be used to define "geometry-related filters". Such filtering relies on coherency along predicable trajectories, and is included in the technique described here. There are at least two important features of the Petronius dataset which makes it more of a challenge than the other datasets presented by Stefani et al. (2007). Firstly, this 3D dataset was collected to investigate the simultaneous rich-azimuth recording so the acquisition geometry was different. In particular, the gun-arrays were positioned such that the primary and secondary events are less orthogonal than in previously examined datasets.

acquisition, dataset, delay, energy, equation, gather, input, inversion, model, radon, Reservoir Characterization, reservoir description and dynamics, secondary estimate, secondary source, seismic processing and interpretation, separation, sparse, sparsity, Sparsity Constraint, technique, transform, Upstream Oil & Gas

Oilfield Places: North America > United States > Gulf of Mexico > Viosca Knoll > Block 786 > Petronius Oil and Gas Field (0.99)

The energy angle-distribution in the local image matrix (LIM) for a planar reflector and for a discontinuous point are different with the former exhibiting a linear energy concentration along certain dip direction while the latter showing a scattered energy distribution. Therefore the cross-correlation value of the local image matrix between adjacent image points can be used to distinguish these two situations. The seismic images of these diffraction points may provide important information about geological discontinuities.

The acquisition of n-shots, more or less simultaneously, increases acquisition efficiency and collects a wider range of information for imaging and reservoir characterisation. Its success relies critically on the ability to separate n-shots from one recording. Stefani et al (2007) showed that while some datasets may be easily separated, others are more difficult. Using the more difficult data example from Stefani et al (loc.cit.), we show that a PEF-based adaptive subtraction (Spitz, 2007) of the estimated wavefield due to a secondary source provides an effective separation of the sources.

acquisition, CMP stack, energy, estimate, interference, LOC, method, PEF, prediction-subtraction approach, problem, Reservoir Characterization, reservoir description and dynamics, secondary source, seg las vegas, seismic processing and interpretation, separation, source, Stefani, technique, wavefield

We adapt a recently published theory (Haney and van Wijk, 2007) for multiply-scattered waves to describe scattering attenuation in a general layered subsurface model. An example of such a subsurface model is one constructed from well logs. The modifications are needed since the original theory shown in Haney and van Wijk (2007) used a model of identical thin layers randomly located within a homogeneous background medium. Here, this restriction is relaxed and a model consisting of layers of random density, P-wave velocity, and thickness is assumed.

The theory takes into account wave interference and is therefore able to represent wave localization. We find that scattering attenuation is in fact a combination of two distinct scattering mechanisms: one due to scattering out of the main direction of wave propagation which would exist in the absence of interference and the other due to wave localization. The length scale over which the latter mechanism acts is called the localization length and is critical to assessing the amount of scattering attenuation in a particular model. We show an application of the theory to the estimation of the localization length in a 1D model taken from well logs at the West Pearl Queen Field, a CO2 sequestration site in New Mexico.

apparent attenuation, energy, equation, Haney, interface, interference, layered media, localization, matrix, Reservoir Characterization, reservoir description and dynamics, seismic processing and interpretation, source, theory, Upstream Oil & Gas, van Wijk, wave localization, wavefield, West Pearl Queen Field

This paper describes the theoretical basis for polarization filters with strong spatial constraints. In this case both the amplitude and polarization properties of the ground roll at any receiver location are estimated using data from that station as well as some of its neighboring stations. This greatly improves the separation of signal and noise, resulting in better preservation of reflected P-wave and Swave energy in the filtered data. The filter is successfully applied to a 2D 3C dataset form South America.

amplitude, Artificial Intelligence, constraint, energy, estimate, ground roll, polarization, polarization ellipse, polarization filter, Polarization property, receiver, Reservoir Characterization, reservoir description and dynamics, seismic processing and interpretation, spatial smoothness constraint, Station, strong spatial constraint, surface, Upstream Oil & Gas

In marine multi-component data processing, the vertical component of particle velocity Z is calibrated against the pressure component P to correct for coupling discrepancies and sensitivity differences between hydrophone and geophone. The PZ calibration processing step is crucial to the success of wavefield decomposition into up- and downgoing waves, as well as into compressional and shear waves. In this paper, we present a new application of the conventional cross-ghosting technique. Our PZ calibration approach is implemented in the x-t domain and considers far offset reflected or refracted energy and their water layer reverberations. These events are commonly and easily identified in shallow water data as they arrive earlier than the direct arrival. Compared to other published techniques, our method is less sensitive to near-offset noise, source bubbles and irregular or sparse offset sampling. We successfully apply the proposed approach to an OBS data set acquired at 150 m water depth over the Britannia field in the North Sea.

Britannia field, Britannia OB, calibration, component, energy, hydrophone, method, minimization, North Sea, ocean bottom, PZ calibration, receiver station, Reservoir Characterization, reservoir description and dynamics, seismic processing and interpretation, shallow water, source, Upstream Oil & Gas, water layer reverberation, window

Oilfield Places: Europe > United Kingdom > North Sea > Central North Sea > Britannia Gas Field (0.99)

Thank you!