Current Filters
Source
Conference
Publisher
Theme
Author
Concept Tag
Ines, Nuno (Partex Oil and Gas) | Azeredo, Ana (Universidade de Lisboa) | Bizarro, Paulo (Partex Oil and Gas) | Ribeiro, Maria Teresa (Petroleum Institute) | Nagah, Adnan
Carbonate reservoirs are commonly heterogeneous and their reservoir quality results from complex interactions between depositional facies and diagenetic processes. The Diagenetic Diagram is a powerful tool that helps in the characterization of the diagenetic processes that have affected the reservoir. From this knowledge, it is possible to significantly improve the understanding of the reservoir's pore system and permeability distributions, which are key factors for development optimization and production sustainability.
A multi-scale and multi-method study (petrography, blue-dye impregnation, selective staining and porosity determination) of Middle Jurassic carbonates from the Lusitanian Basin (Portugal) has been undertaken, to find the best systematic approach to these reservoirs. It has involved thorough diagenetic characterization of each lithotype (lithofacies, texture, porosity, qualitative permeability assessment and diagenetic evolution). The study area was selected based on its excellent and varied exposures of carbonate facies and availability of core.
Methodological and terminological challenges were faced during the study, especially dealing with data coming from several scales (macro, meso, and micro). In order to overcome these challenges, a diagenetic diagram was developed and applied to the selected rocks. It is a tool that allows the integration of data coming from outcrops, hand samples, cores, cuttings, thin sections, and laboratory experiments.
This is carried out in a dynamic, guided, systematic, and rigorous way, enabling the evaluation of the relationship between facies, diagenetic evolution and pore systems. The latter are characterized regarding size, geometry, distribution, and connectivity. This enables the identification and characterization of permeability heterogeneities in the rocks. It was concluded that the main porosity class (i.e. secondary) was created by diagenetic processes.
The proposed method has strong application potential for: detailed characterization and understanding of porosity and permeability in carbonate reservoirs, from a diagenetic evolution and fluid flow perspective (e.g. SCAL and pore system description); definition of diagenetic trends for modeling petrophysical properties and rock types. In this regard, the method is being applied to a Valanginian carbonate reservoir in Kazakhstan, and some preliminary results are presented in this paper. Refining this technique may be helpful for similar carbonate studies, enhancing the results of typical diagenetic studies by improving the characterization of reservoir properties at various scales, thus contributing to a more sustainable exploitation of hydrocarbon reservoirs.
The amount of tight formations petrophysical work conducted at present in horizontal wells and the examples available in the literature are limited to only those wells that have complete data sets. This is very important. But the reality is that in the vast majority of horizontal wells the data required for detailed analyses are quite scarce.
To try to alleviate this problem, a new method is presented for complete petrophysical evaluation based on information that can be extracted from drill cuttings in the absence of well logs. The cuttings data include porosity and permeability. The gamma ray (GR) and any other logs, if available, can help support the interpretation. However, the methodology is built strictly on data extracted from cuttings and can be used for horizontal, slanted and vertical wells. The method is illustrated with the use of a tight gas formation in the Deep Basin of the Western Canada Sedimentary Basin (WCSB). However, it also has direct application in the case of liquids.
The method is shown to be a powerful petrophysical tool as it allows quantitative evaluation of water saturation, pore throat aperture, capillary pressure, flow units, porosity (or cementation) exponent m, true formation resistivity, distance to a water table (if present), and to distinguish the contributions from viscous and diffusion-like flow in tight gas formations. The method further allows the construction of Pickett plots without previous availability of well logs. The method assumes the existence of intervals at irreducible water saturation, which is the case of many tight formations currently under exploitation.
It is concluded that drill cuttings are a powerful direct source of information that allows complete and practical evaluation of tight reservoirs where well logs are scarce. The uniqueness and practicality of this quantitative procedure is that it starts from only laboratory analysis of drill cuttings, something that has not been done in the past.
Aguilera, Roberto F. (Curtin University) | Ramirez, John Freddy (University of Calgary) | Ortega, Camilo Ernesto (University of Calgary)
Abstract
Fractal and power law distributions have been found in the past to be useful for modeling some reservoir properties following the assumptions of constant shape and self-similarity. This study shows, however, that pore throat apertures, fracture apertures, petrophysical and drill cuttings properties of unconventional formations are better matched with a variable shape distribution model (as opposed to constant shape). This permits better reservoir characterization and forecasting of reservoir performance.
Pore throat apertures, fracture apertures, petrophysical properties and drill cutting sizes from tight and shale reservoirs are shown to follow trends that match the variable shape distribution model (VSD) with coefficients of determination (R2) that are generally larger than 0.99. The good fit of the actual data with the VSD allows more rigorous characterization of these properties for use in mathematical models. Data that could not be described previously by a single equation can now be matched uniquely by the VSD. Examples are presented using data from conventional, tight and shale formations found in Canada, the United States, China, Mexico and Australia.
In addition, the study shows that the size of cuttings drilled in vertical and horizontal wells can also be matched with the VSD. This allows the use of drill cuttings, an important direct source of information, for quantitative evaluation of reservoir and rock mechanics properties. The results can be used for improved design of stimulation jobs including multi stage hydraulic fracturing in horizontal wells. This is important as the amount of information collected in horizontal wells drilled through out tight formations, including cores and well logs, is limited in most cases.
It is concluded that the VSD is a valuable tool that has significant potential for applications in conventional, low and ultra-low permeability formations and for evaluating distribution of rock properties at the micro and nano-scale.
Introduction
Fractal geometry was introduced by Mandelbrot (1982) in his seminal work "The Fractal Geometry of Nature.?? He indicated that this type of geometry applies to many irregular objects in nature. Since then, fractals have been shown to be useful in many disciplines including geology, petroleum engineering, earthquakes, and economics to name a few. In geology, the approach has been used, for example, to evaluate the distribution of natural fractures in outcrops and reservoir rocks; also for evaluating stratigraphic units. In petroleum engineering, they have been used in efforts to capture the distribution of natural fractures for well test analysis. In the case of telluric movements, fractals have been used to evaluate very small to very large earthquakes. In economics, fractals have been used to analyze the distribution of income amongst populations. In the case of the oil and gas industry as a whole, fractal geometry has been used for estimating the spatial distribution of hydrocarbon accumulations (Barton and Scholz, 1995).