**Peer Reviewed**

**Source**

**Journal**

**Conference**

**Publisher**

**Theme**

**Concept Tag**

- basis function (1)
- BILU (2)
- coarse block (1)
- Computation (1)
- conservation (2)
- construction (3)
- convergence (2)
- equation (2)
- fine-scale saturation (1)
- grid (1)
- iteration (3)
- mass conservation (1)
- matrix (1)
- Modeling & Simulation (2)
- msfvm (1)
- Multiscale (3)
- Multiscale Method (1)
**operator (3)**- permeability (3)
- preconditioner (2)
- problem (1)
- prolongation operator (3)
- reservoir description and dynamics (1)
- reservoir simulation (3)
- restriction (1)
- restriction operator (2)
- saturation (2)
- saturation equation (1)
- scaling method (3)
- solution (1)
- solver (1)
- TAM (2)
- Tchelepi (2)
- Timestep (1)
- transport equation (1)
- two-stage algebraic multiscale linear (1)
- Upstream Oil & Gas (3)

**File Type**

Zhou, Hui (ConocoPhillips Subsurface Technology) | Tchelepi, Hamdi A. (Stanford University)

An efficient two-stage algebraic multiscale solver (TAMS) that converges to the fine-scale solution is described. The first (global) stage is a multiscale solution obtained algebraically for the given fine-scale problem. In the second stage, a local preconditioner, such as the Block ILU (BILU) or the Additive Schwarz (AS) method, is used. Spectral analysis shows that the multiscale solution step captures the low-frequency parts of the error spectrum quite well, while the local preconditioner represents the high-frequency components accurately. Combining the two stages in an iterative scheme results in efficient treatment of all the error components associated with the fine-scale problem. TAMS is shown to converge to the reference fine-scale solution. Moreover, the eigenvalues of the TAMS iteration matrix show significant clustering, which is favorable for Krylov-based methods. Accurate solution of the nonlinear saturation equations (i.e., transport problem) requires having locally conservative velocity fields. TAMS guarantees local mass conservation by concluding the iterations with a multiscale finite-volume step. We demonstrate the performance of TAMS using several test cases with strong permeability heterogeneity and large-grid aspect ratios. Different choices in the TAMS algorithm are investigated, including the Galerkin and finite-volume restriction operators, as well as the BILU and AS preconditioners for the second stage. TAMS for the elliptic flow problem is comparable to state-of-the-art algebraic multigrid methods, which are in wide use. Moreover, the computational time of TAMS grows nearly linearly with problem size.

BILU, conservation, construction, convergence, equation, grid, iteration, mass conservation, matrix, Modeling & Simulation, msfvm, Multiscale, operator, permeability, preconditioner, prolongation operator, reservoir simulation, restriction operator, saturation, scaling method, TAM, Upstream Oil & Gas

Oilfield Places:

- Europe > Norway > North Sea > Tarbert Formation (0.99)
- Europe > Germany > North Sea > Tarbert Formation (0.99)

Zhou, Hui (ConocoPhilips) | Lee, Seong H. (Chevron Energy Technology Company) | Tchelepi, Hamdi A. (Stanford University)

basis function, coarse block, Computation, construction, equation, fine-scale saturation, iteration, Modeling & Simulation, Multiscale, Multiscale Method, operator, permeability, prolongation operator, reservoir simulation, saturation, saturation equation, scaling method, Tchelepi, Timestep, transport equation, Upstream Oil & Gas

Zhou, Hui (ConocoPhillips) | Tchelepi, Hamdi A. (Stanford University)

Previous research on multiscale methods for subsurface flow aims to obtain an efficient multiscale solution to the fine-scale problems. Such multiscale solution is usually a good approximation to the fine-scale problem. However, it has been reported that the multiscale solution deteriorates for high aspect ratios and channelized structures of permeability. Moreover, the multiscale solution does not converge to the fine-scale solution unless some special techniques are used.

In this paper, we propose an efficient two-stage algebraic multiscale (TAMS) method that converges to the fine-scale solution. The TAMS method consists of two stages, namely global and local stages. In the global stage, a multiscale solution is obtained purely algebraically from the fine-scale matrix. In the local stage, a local solution is constructed from a local preconditioner such as Block ILU(0) (BILU) or Additive Schwarz (AS) method. Spectral analysis shows that the multiscale solution step captures the low-frequency spectra in the original matrix very well and when combined with a local preconditioner that represents the high-frequency spectra, the full spectra can be well approximated. Thus the TAMS is guaranteed to converge to the fine-scale solution. Moreover, the spectra of the TAMS method tend to cluster together, which is a favorable property for Krylov subspace methods to converge fast. We also show that local mass conservation can be preserved if a multiscale solution step with the finite-volume restriction operator is applied before the iterative procedure exits. This allows for the TAMS method to be used to build efficient approximate solutions for multiphase flow problems that need to solve transport equations.

We test the numerical performance of the TAMS method using several challenging large-scale problems (fine-scale grid in the magnitude of one million) with complex heterogeneous structures and high aspect ratios. Different choices in the TAMS algorithm are employed, including the Galerkin or finite-volume type of restriction operator, BILU or AS preconditioner for the second stage, and the size of blocks for BILU and AS. The performance of TAMS is comparable or superior to the state-of-the-art algebraic multigrid (AMG) preconditioner when some optimal choice in the TAMS method is adopted. Moreover, the convergence of the TAMS method is insensitive to problem sizes, and the CPU time is almost linear to problem sizes. These indicate the TAMS method is efficient and

robust for large-scale problems.

BILU, conservation, construction, convergence, iteration, Multiscale, operator, permeability, preconditioner, problem, prolongation operator, reservoir description and dynamics, reservoir simulation, restriction, restriction operator, scaling method, solution, solver, TAM, Tchelepi, two-stage algebraic multiscale linear, Upstream Oil & Gas

Oilfield Places:

- Europe > Norway > North Sea > Tarbert Formation (0.99)
- Europe > Germany > North Sea > Tarbert Formation (0.99)

Thank you!