**Peer Reviewed**

**Source**

**Journal**

**Theme**

**Author**

**Concept Tag**

- algorithm (1)
- annual meeting (1)
- application (2)
- approximation (1)
- artifact (1)
- Artificial Intelligence (1)
- basis function (1)
- BILU (1)
- coarse block (1)
- Computation (1)
- conservation (1)
- construction (2)
- convergence (1)
- crosstalk (1)
- Curvelet transform (1)
- Demanet (1)
- equation (3)
- fine-scale saturation (1)
- flow loop (1)
- flow measurement (1)
- flow measurement technology (1)
- flow metering (1)
- flow rate (1)
- flow velocity (1)
- flowmeter (1)
- flowmeter system (1)
- freedom (1)
- geophysics (1)
- grid (1)
- Hessian (1)
- icv (1)
- Imaging (1)
- installation (1)
- instrumentation (1)
- interface (1)
- inverse (1)
- inverse Hessian (1)
- inversion (2)
- iteration (2)
- linearized full-wave inversion (1)
- mass conservation (1)
- matrix (2)
- migrated image (1)
- migration (2)
- migration operator (1)
- migration velocity (1)
- model space (1)
- Modeling & Simulation (2)
- msfvm (1)
- Multiphase (1)
- multiple energy (1)
- multiple imaging (1)
- multiple reflection (1)
- Multiscale (2)
- Multiscale Method (1)
**operator (5)**- optical flowmeter (1)
- permeability (2)
- pipe (1)
- preconditioner (2)
- production control (1)
- production monitoring (1)
- prolongation operator (2)
- pseudodifferential (1)
- reflection (1)
- reflector (1)
- Reservoir Characterization (2)
- reservoir simulation (2)
- Reservoir Surveillance (1)
- restriction operator (1)
- saturation (2)
- saturation equation (1)
- scaling method (2)
- SEG (1)
- sensor (1)
- subsurface (1)
- TAM (1)
- Tchelepi (1)
- test separator (1)
- Timestep (1)
- topside instrumentation (1)
- transport equation (1)
- two-phase flowmeter (1)
- Upstream Oil & Gas (5)
- wave-equation hessian (1)

**File Type**

Wong, Mandy (Stanford University) | Biondi, Biondo (Stanford University) | Ronen, Shuki (Stanford University)

We presents a technique for imaging both primaries and multiples using linearized inversion. Linearized full-wave inversion (LFWI) makes use of the multiple energy as signal while removing the crosstalk in the image. We demonstrate the concept and methodology in 2D with a synthetic Sigsbee2B model.

artifact, crosstalk, equation, geophysics, Imaging, interface, inversion, linearized full-wave inversion, migration, migration operator, migration velocity, multiple energy, multiple imaging, multiple reflection, operator, reflection, reflector, Reservoir Characterization, SEG, subsurface, Upstream Oil & Gas

SPE Disciplines: Reservoir Description and Dynamics > Reservoir Characterization > Seismic processing and interpretation (1.00)

We present a method for approximately inverting the Hessian of full waveform inversion as a dip-dependent and scaledependent amplitude correction. The terms in the expansion of this correction are determined by least-squares fitting from a handful of applications of the Hessian to

algorithm, annual meeting, application, approximation, Artificial Intelligence, Curvelet transform, Demanet, freedom, Hessian, inverse, inverse Hessian, inversion, matrix, migrated image, migration, model space, operator, preconditioner, pseudodifferential, Reservoir Characterization, Upstream Oil & Gas, wave-equation hessian

SPE Disciplines: Reservoir Description and Dynamics > Reservoir Characterization > Seismic processing and interpretation (1.00)

In-well flow measurement remains as one of the most difficult tasks in the oil and gas industry, mainly due to the challenging conditions of the downhole environment. When made successfully, however, it plays a major role in monitoring and optimizing well performance, especially for the wells equipped with advanced completion devices. The increasing demand for in-well flow measurement is also driven by other factors including zonal production allocation in multizone completions as well as reliable commingled production, reduction of surface well tests and facilities, and detection of production anomalies.

This paper provides a closer look at one of the state-of-art in-well flow measurement technologies: optical, strain-based, phase flow rate measurements via turbulent structure velocity and sound speed of the turbulent flow. It is an introduction to how this flow measurement technology works and how it is applied to different flow applications from single-phase injectors to multiphase producers. Specific field examples representing different flow applications are also referenced to published material. The strong and weak points of the technology are explored, and in the process, an operation envelope is produced for the use of this technology. The system response to the presence of advanced completion devices are also discussed, guidelines are given, and recommendations are made based on field and lab tests.

Understanding a technology's strong and weak points before implementation is essential to ensuring that informed and successful decisions can be made concerning its use for a given application. This process is often mutually beneficial to both operators and equipment manufacturers since collaborations can lead to advancement of technology and, as a result, provide even more reliable solutions.

**Background**

The use of the phrase "intelligent well?? was not common a decade ago. The reason is hidden in its definition. Because we are engineers and not linguists, our definition can be based on what we would like to achieve in using that phrase: An intelligent well should typically have sensors downhole to measure flow properties including pressure (P), temperature (T), flow rates, phase information such as gas volume fraction (GVF), water-in-liquid ratio (WLR), and perhaps more. It should also be possible to control and optimize the well production by means of adjustable chokes on the surface and in the well, so that an even flow distribution can be achieved particularly in multizone applications with the end result being more efficient production and longer lifetime of the well. Most of these complex, state-of-art devices were not available not too long ago. This has changed thanks to the technological advancements, and today we can manage wells more "intelligently??.

application, flow loop, flow measurement, flow measurement technology, flow metering, flow rate, flow velocity, flowmeter, flowmeter system, icv, installation, instrumentation, Multiphase, operator, optical flowmeter, pipe, production control, production monitoring, Reservoir Surveillance, sensor, test separator, topside instrumentation, two-phase flowmeter, Upstream Oil & Gas

Country:

- Europe (1.00)
- North America > United States (0.94)
- Asia > Middle East (0.67)

Oilfield Places:

- North America > United States > Gulf of Mexico > Ship Shoal South Addition > East Gulf Coast Tertiary Basin > Block 359 > Mahogany Field (0.99)
- North America > United States > Gulf of Mexico > Ship Shoal South Addition > East Gulf Coast Tertiary Basin > Block 349 > Mahogany Field (0.99)
- North America > United States > Colorado > Piceance Basin > Buzzard Field > Williams Fork Formation (0.99)
- (2 more...)

SPE Disciplines:

An efficient two-stage algebraic multiscale solver (TAMS) that converges to the fine-scale solution is described. The first (global) stage is a multiscale solution obtained algebraically for the given fine-scale problem. In the second stage, a local preconditioner, such as the Block ILU (BILU) or the Additive Schwarz (AS) method, is used. Spectral analysis shows that the multiscale solution step captures the low-frequency parts of the error spectrum quite well, while the local preconditioner represents the high-frequency components accurately. Combining the two stages in an iterative scheme results in efficient treatment of all the error components associated with the fine-scale problem. TAMS is shown to converge to the reference fine-scale solution. Moreover, the eigenvalues of the TAMS iteration matrix show significant clustering, which is favorable for Krylov-based methods. Accurate solution of the nonlinear saturation equations (i.e., transport problem) requires having locally conservative velocity fields. TAMS guarantees local mass conservation by concluding the iterations with a multiscale finite-volume step. We demonstrate the performance of TAMS using several test cases with strong permeability heterogeneity and large-grid aspect ratios. Different choices in the TAMS algorithm are investigated, including the Galerkin and finite-volume restriction operators, as well as the BILU and AS preconditioners for the second stage. TAMS for the elliptic flow problem is comparable to state-of-the-art algebraic multigrid methods, which are in wide use. Moreover, the computational time of TAMS grows nearly linearly with problem size.

BILU, conservation, construction, convergence, equation, grid, iteration, mass conservation, matrix, Modeling & Simulation, msfvm, Multiscale, operator, permeability, preconditioner, prolongation operator, reservoir simulation, restriction operator, saturation, scaling method, TAM, Upstream Oil & Gas

Oilfield Places:

- Europe > Norway > North Sea > Tarbert Formation (0.99)
- Europe > Germany > North Sea > Tarbert Formation (0.99)

basis function, coarse block, Computation, construction, equation, fine-scale saturation, iteration, Modeling & Simulation, Multiscale, Multiscale Method, operator, permeability, prolongation operator, reservoir simulation, saturation, saturation equation, scaling method, Tchelepi, Timestep, transport equation, Upstream Oil & Gas

Thank you!