![]()
Productivity estimates in horizontal wells are subject to more uncertainty than comparable estimates in vertical wells. Further, it is much more difficult to interpret well test data because of 3D flow geometry. The radial symmetry usually present in a vertical well does not exist. Several flow regimes can potentially occur and need to be considered in analyzing test data from horizontal wells. Wellbore storage effects can be much more significant and partial penetration and end effects commonly complicate interpretation. In vertical wells, variables such as average permeability, net vertical thickness, and skin are used. Horizontal wells need more detail. Not only is vertical thickness important, but the horizontal dimensions of the reservoir, relative to the horizontal wellbore, need to be known. Evaluation of data from a vertical wellbore will generally center on a single flow regime, such as infinite-acting radial flow, known as the MTR. However, a pressure-transient test in a horizontal well can involve as many as five major and distinct regimes that need to be identified. These regimes may or may not occur in a given test and may or may not be obscured by wellbore storage effects.