Current Filters
Peer Reviewed
Source
Journal
Conference
Publisher
Theme
Author
Concept Tag
File Type
Bian, Changrong (Sinopec Exploration & Production Research Institute) | Zhang, Dianwei (Sinopec Exploration & Production Research Institute) | Shen, Feng (GeoReservoir Research) | Wo, Yujin (Sinopec Exploration & Production Research Institute) | Sun, Wei (Sinopec Exploration & Production Research Institute) | Li, Jingliang (GeoReservoir Research) | Han, Juan (GeoReservoir Research) | Li, Shuiquan (GeoReservoir Research) | Ma, Qiang (Sinopec Exploration & Production Research Institute)
Delineating geometry of natural fractures realistically and understanding fracture stress sensitivity help to optimize well placement and well spacing design in shale gas reservoirs. This paper presents a methodology for building 3D hybrid discrete natural fracture network (DFN) models and using an analytical model to assess reactivation potential of natural fracture in the Longmaxi shale, Sichuan Basin.
Small-throw faults and natural fractures ranging from seismic scale to well scale in shale reservoirs have important effects on the success of horizontal drilling and hydraulic fracturing. Seismic geometric multi-attributes at different resolution scales are used to classify seismic facies according to the degree of fracturing. Small-throw faults are delineated using seismic facies and validated against drilling data. We develop a discrete natural fracture network (DFN) model at the seismic scale by meshing fracture lineaments tracked from an enhanced curvature attribute. Fracture topologies are used for fracture connectivity analysis to build local fracture networks along and around the horizontal wellbores. Diffuse fractures at the small scale are modeled with curvature attributes and well data analysis under the constraint of the seismic facies. The analytical model incorporates fracture properties and geomechanical model to describe the deformation of natural fractures due to hydraulic fracturing. Fracture stress-sensitivity are assessed based on changes of fracture volumes under different stress conditions. Characterized reactivated local fracture networks at different scales along the horizontal wells are used to map out volumetric extent of zones with potential to develop tensile and shear deformation during hydraulic fracturing. Available microseismic data from the hydraulic fracture stimulation of the reservoir is used to validate the fracture models.
Our stress sensitivity analysis indicates that reactivation potential of natural fractures varies considerably, mainly depending on natural fracture size and orientation, rock mechanical properties and anisotropy of horizontal stresses. DFN models reveal that fracture concentrations are correlative with the footprint of observed microseismic events. Comparison of 3D natural fracture models with the microseismic event distribution shows that vertical variation of fracture properties in the laminated shale reservoir adds complexity for fracture propagation.
A case study is used to illustrate the efficiency of the methodology. Fracture models at different scales and associated fracture stress-sensitivity can be used as a predictive tool for locating new wells and completion design in shale gas reservoirs.
Ba Geri, Mohammed (Missouri University of Science and Technology) | Ellafi, Abdulaziz (University of North Dakota) | Flori, Ralph (Missouri University of Science and Technology) | Belhaij, Azmi (Saudi Metal Coating Company) | Alkamil, Ethar H. K. (University of Basrah)
Nowadays, as the worldwide consumption of hydrocarbon increases, while the conventional resources beings depleted, turning point toward unconventional reservoirs is crucial to producing more additional oil and gas from their massive reserves of hydrocarbon. As a result, exploration and operation companies gain attention recently for the investment in unconventional plays, such as shale and tight formations. A recent study by the U.S. Energy Information Administration (EIA) reported that the Middle East (ME) and North Africa (NF) region holds an enormous volume of recoverable oil and gas from unconventional resources. However, the evaluation process is at the early stage, and detailed information is still confidential with a limitation of the publication in terms of unconventional reservoirs potential. The objective of this research is to provide more information and build a comprehensive review of unconventional resources to bring the shale revolution to the ME and NF region. In addition, new opportunities, challenges, and risks will be introduced based on transferring acquiring experiences and technologies that have been applied in North American shale plays to similar formations in the ME and NF region. The workflow begins with reviewing and summarizing more than 100 conference papers, journal papers, and technical reports to gather detailed data on the geological description, reservoir characterization, geomechanical property, and operation history. Furthermore, simulation works, experimental studies, and pilot tests in the United States shale plays are used to build a database using the statistic approach to summarize and identify the range of parameters. The results are compared to similar unconventional plays in the region to establish guidelines for the exploration, development, and operation processes. This paper highlights the potential opportunities to access the unlocked formations in the region that holds substantial hydrocarbon resources.
The combination of extended-length horizontal drilling and high volume hydraulic fracturing has led to previously unimaginable production increases, yet the recovery potential of unconventional oil and gas resources remains largely unrealized. Recovery factors for unconventional oil and gas wells are typically reported at < 20% in gas shale reservoirs and < 10% in the oil plays.
Neutrally buoyant ultra-lightweight proppants have been demonstrated to effectively provide production from fracture area that is otherwise unpropped and thus, non-contributive with conventional sand/slickwater hydraulic fracturing processes. Production simulations illustrate that treatment designs incorporating neutrally buoyant ULW proppant treatment designs tailored for contemporary unconventional well stimulations deliver cumulative production increases of 30% to over 50% compared to the typical large volume sand/slickwater treatments. Unfortunately, production simulation results may not sufficiently lessen risk uncertainties for operators planning high-cost multi-stage horizontal stimulations. Therefore, several field trial projects using the neutrally buoyant ULW proppant in extended-length horizontal unconventional wells are currently in progress to validate the production simulations.
Since the initial 4-stage fracturing stimulation incorporating neutrally buoyant ultra-lightweight proppant in 2007, deployment has occurred in fracture stimulating hundreds of oil and gas wells spanning multiple basins and reservoirs. Most of the wells are vertical or relatively short lateral wells common to asset development practices predating the unconventional shale completions mania, but many were targeted at the same unconventional reservoirs as the current multi-stage horizontal completions. Several published case histories have documented the production enhancement benefits afforded by the legacy ULW proppant wells, but questions remained as to how those lessons might be correlated to provide engineers confidence in the current production simulations.
Well completion and production information was mined from the various accessible databases for the neutrally buoyant ULW proppant wells. The scope of the legacy data compiled for analysis was limited to the reservoirs common to the current field trials and production simulations, ie. unconventional oil and gas shale reservoirs. Production performance contributions of neutrally buoyant ULW proppant in past applications were compared with the production uplift observed in applications and/or simulated application of neutrally buoyant ultra-lightweight proppant fracturing treatments in current multi-stage horizontal reservoirs.
The lessons learned from this investigation provide the practicing engineer the means to confidently assess production simulation data for multi-stage horizontal unconventional completions incorporating neutrally buoyant ulw proppant in the treatment designs.
Abstract
Shale has been usually recognized as a transverse isotropic (TI) medium in conventional geomechanical log interpretation due to its laminated nature. However, when natural fractures (NFs) exist in the rock body, additional elastic anisotropy can be introduced, converting laminated Shale to an orthorhombic (OB) medium. Previous studies illustrate that treating the naturally fractured shale rock as a TI medium by ignoring the NF-induced anisotropy can cause the erroneous estimation of the geomechanical properties and in-situ stress. In this paper, the study is extended to quantify the impact of NF-induced elastic anisotropy on completion and fracturing designs in different actual shale reservoirs in U.S.
Published acoustic log data from five different shale formations (Bakken, Marcellus, Haynesville, Eagle Ford, and Niobrara) are collected and examined to determine their availability to generate the stiffness tensor of the representative TI background rock of each Shale reservoir. Natural fractures with different intensity values from 0 to 10 per foot, with shear wave splitting ranging from 0-5%, are introduced in the TI background rock to create the corresponding OB rock stiffness tensor. The OB stiffness tensors of different shale cases are finally converted back to the compressional and shear acoustic signals, which can be interpreted based on the TI or OB assumptions. The final output elastic moduli and in-situ stress results interpreted from different assumptions are compared, and the impact of NF-induced elastic anisotropy on completion and fracturing designs is quantified and fully understood for different shales.
The results show that introducing natural fractures into the TI background shale rock leads to a decrease of the in-situ stress and Young's modulus at the orientation perpendicular to the natural fracture plane. Such impact increases with increasing split of fast and slow shear wave slowness (SWS), while decreases with increasing ratio of the “soft mineral content” (i.e. clay and TOC) to the “hard mineral content” (i.e. quartz and calcite). In addition to that, different impacts on stress contrast (variation along the vertical depth) are observed for different shales, owing to the complex mineralogy/lithology sequences of different shale formations. As a result, ignoring the natural fracture induced elastic anisotropy in acoustic log interpretation can result in an overestimation of in-situ stress and Young's modulus as well as a misinterpretation of stress contrast, which further leads to the problematic or suboptimal completion/fracturing designs. The results have been also compared with the shale mineralogy/lithology log data to reveal how the natural fracture induced elastic anisotropy impact is associated with the natural fracture properties (compliance and intensity) and the mineralogy of TI background rocks.
The current study not only illustrates the importance of taking natural fracture induced anisotropy into account when performing geomechanical log interpretation, but also provides guidance to the operators of the five shale fields to better evaluate their current completion/fracturing design strategies and to determine if the natural fracture induced anisotropy impact should be corrected for their current designs or not based on the monitored splitting of fast and slow shear wave slowness.
Inyang, Ubong (Halliburton) | Cortez-Montalvo, Janette (Halliburton) | Dusterhoft, Ron (Halliburton) | Apostolopoulou, Maria (University College London) | Striolo, Alberto (University College London) | Stamatakis, Michail (University College London)
Estimating the effective permeability and microfracture (MF) conductivity for unconventional reservoirs can be challenging; however, a new method for estimating using a stochastic approach is discussed. This new analysis method estimates matrix permeability and the unpropped and propped MF conductivities during laboratory testing where MFs were propped with ultrafine particles (UFPs).
Kinetic Monte Carlo (KMC) simulations form the basis of the method used to estimate effective permeability of the core sample. First, the stochastic model was implemented to calculate effective matrix permeability of a small core taken from unfractured Eagle Ford and Marcellus formation samples using scanning electron microscopy (SEM) images and adsorption data to obtain the pore-size distribution (PSD) within the sample. The KMC approach then evaluated the effect of various parameters influencing the conductivity of laboratory-created MFs. Case studies considered for this work investigate the conductivity improvement of a manmade MF as a function of the UFPs used as proppants that maintain width under high stress, the UFP (proppant) concentration, and the UFP flow perpendicular into a secondary or adjacent MF zone (2ndMF) penetrating the face of an opened MF during flow testing under stress. The leakoff area widths considered were 1, 2, and 3 mm and can be propped or unpropped.
Results obtained for the unfractured Eagle Ford and Marcellus samples closely correlate with other computational and experimental data available. For the laboratory-prepared nonpropped and propped MF samples, the effective propped width was determined to have the greatest effect on the MF conductivity, which increased by two orders of magnitude in the presence of the UFPs. The remaining two factors—proppant concentration and length of 2ndMFs—helped improve the effective MF conductivity in a linear manner; the highest proppant concentration and the 2ndMF zone resulted in the highest fracture conductivity achieved. Insight obtained from this study can be used to optimize fracturing designs by including UFPs and to create strategies for maximizing hydrocarbon recovery during development of unconventional resources where MFs are opened during stimulation treatments.
Eagle Ford shale in South Texas is a major oil and gas production play of in the US Gulf Coast region. While some attribute the successful well performance of Eagle Ford to the technology advancement such as horizontal drilling and hydraulic fracturing, others credit the role of geological settings. However, it is still unclear what the individual or combined effects from these two sides are. Data-driven approaches, including Partial Least Square (PLS), Random Forest (RF), and Deep Neural Network (DNN), reveal relationships among the production, geological settings, and completion strategies.
In this study, we considered six-month cumulative oil production as the well performance criterion for horizontal wells completed from 2015 to 2017. We selected completion parameters such as perforation length, proppant loading, and fluid volume. We selected structural depth, lower Eagle Ford Shale thickness, total organic carbon (TOC), number of limestone beds, and average bed thickness as the key geological controls on regional production.
We calculated Spearman correlation coefficients to detect correlated input parameters and applied Singular Value Decomposition (SVD) to identify redundant input parameters. Then we performed partial linear square (PLS) regression to predict the six-month oil production from geological and completion parameters. We then used random forest (RF) and deep neural network (DNN) as non-linear machine learning techniques to predict six-month oil production and compared the prediction accuracies for these techniques against the recorded well performance using the coefficient of determination and mean squared error as criteria. Last, we ranked the relative importance of each input parameter using RF and Minimum Redundancy Maximum Relevance (MRMR).
This paper first provides the rational of input variables selection. Then the construed model helps understand the effects of completion designs and geological variables on well productivity in the Eagle Ford. This might provide valuable information to help to make decisions for new well development. This concept can be generalized among other plays.
The water recovered from hydraulic-fracturing operations (i.e., flowback water) is highly saline, and can be analyzed for reservoir characterization. Past studies measured ion-concentration data during imbibition experiments to explain the production of saline flowback water. However, the reported laboratory data of ion concentration are approximately three orders of magnitude lower than those reported in the field. It has been hypothesized that the significant surface area created by hydraulic-fracturing operations is one of the primary reasons for the highly saline flowback water.
In this study, we investigate shale/water interactions by measuring the mass of total ion produced (TIP) during water-imbibition experiments. We conduct two sets of imbibition experiments at low-temperature/low-pressure (LT/LP) and high-temperature and high-pressure (HT/HP) conditions. We study the effects of rock surface area (As), temperature, and pressure on TIP during imbibition experiments. Laboratory results indicate that pressure does not have a significant effect on TIP, whereas increasing As and temperature both increase TIP. We use the flowback-chemical data and the laboratory data of ion concentration to estimate the fracture surface area (Af) for two wells completed in the Horn River Basin (HRB), Canada. For both wells, the estimated Af values from LT/LP and HT/HP test results have similar orders of magnitude (approximately 5.0×106 m2) compared with those calculated from production and flowback rate-transient analysis (RTA) (approximately 106 m2). The proposed scaleup procedure can be used as an alternative approach for a quick estimation of Af using early-flowback chemical data.
Weijers, Leen (Liberty Oilfield Services) | Wright, Chris (Liberty Oilfield Services) | Mayerhofer, Mike (Liberty Oilfield Services) | Pearson, Mark (Liberty Resources) | Griffin, Larry (Liberty Resources) | Weddle, Paul (Liberty Resources)
Hydraulic fracturing has been a part of oil & gas development in North America for seven decades. Hydraulic fracturing was first conducted in 1947. Commercial operations began in 1949. After over twenty years fracturing took a large step up in the late-1970s with its application to tight gas sand formations. The game changer that brought discussion of hydraulic fracturing to dinner tables, bars and sidelines of soccer games is the recent advances that enable commercial extraction of natural gas and oil directly from shale source rocks. Since the start of shale fracturing in the early-1990s, fracturing technology and the pressure pumping industry's efficiency in delivering fracturing services have changed almost beyond recognition. The result has been the world-changing Shale Revolution.
Through researching industry databases, the authors have compiled an industry-wide review of North American hydraulic fracturing activity dating back to the first work done in the late 1940s. Yearly stage count in the 1950s through the early 1990s was 10,000 – 30,000 stages/year, while recent peak levels show a step change in activity aproaching 500,000 stages/year (
The authors show how the industry achieved a step-change in reducing service delivery cost through innovation and efficiency, allowing sustained economic development of unconventional resources at decreasing breakeven production costs. Technological changes, as assisted by a better understanding through frac diagnostics, integrated modeling and statistical analysis have enabled the large cost reduction to commercially produce a barrel of oil. As a result, shale frac designs have focused on higher intensity completions with tighter stage and cluster spacing, improved diversion through extreme limited entry perforation design and simultaneous and zipper frac'ing, increasing proppant mass per well, utilizing next-generation frac fluids to increase produced water recycling and using cheaper lower-quality proppant. At the same time, the environmental footprint of oil & gas production has been shrinking and will continue to do so as operational changes continue to make our industry a better neighbor, for example through faster well construction utilizing fewer pad locations, development of quiet fleets, greener frac chemistry, frac focus disclosure, etc. Together, oil and gas operators and their service providers have used technology & innovation to improve efficiencies and increase the overall daily pump time per frac crew. However, there is plenty of room for further improvements in technology and efficiency.
We believe this is the first industry database of its kind covering hydraulic fracturing activity in the United States, going back to the 1940s. We hope this paper provides a unique perspective of how our industry has changed through the Shale Revolution.
Stephenson, Ben (Shell Canada) | Bai, Taixu (SEPCO) | Huckabee, Paul (SEPCO) | Tolle, John (SEPCO) | Li, Ruijian (SEPCO) | MacDonald, Jeff (Shell Canada) | Acosta, Luis (Shell Canada)
Does the sub-surface drive completion design or is the rock less of a concern with industry trends to higher proppant-, fluid- and stage-intensities? To address this challenge it was first necessary to understand; 1) how the sub-surface could potentially influence completion and stimulation design, 2) what are the available engineering levers and moreover, 3) whether well performance has actually been impacted by tailoring completions in different plays from specific case-studies.
Although there is a multitude of published field examples of how completion design changes have driven value, clarity around the inter-connectedness with sub-surface variability, either between plays or within a play, is commonly missing. New templates have been developed that describe the conceptual links between the nine key 'Sub-surface Drivers' for hydraulic fracturing and their associated engineering Levers categorized by well-, fluid-, proppant- and stage-design. These templates are a compilation of extensive empirical observations from both operations and field performance reviews incorporating thousands of wells across North America, supported with learnings from geomechanical theory and modeling.
The nine Sub-surface Drivers that influence completion design and control the access to hydrocarbons are, 1) mobility, 2) reservoir pressure, 3) gross thickness, 4) layering heterogeneity, 5) rock stiffness, 6) natural fractures, 7) stress anisotropy, 8) risk of fraccing faults and, 9) risk of fraccing out of zone. Drivers 1-7 govern the connectivity, whereas 8 and 9 influence stimulation ineffectiveness. It is proposed that there are approximately fifteen primary engineering Levers related to these nine Drivers, which have been shown to have a measurable impact on completion effectiveness and/or production.
Case studies illustrate that the Sub-surface Drivers play a significant role in most plays, but they are not all relevant in every play. The challenge is to acknowledge the variability, or lack of, and pursue completion design optimization goals, while managing the variance in the well performance range.
Whereas industry trends of increasing completions intensity have delivered more value in many plays, the Sub-surface Drivers concept have primarily proven useful to mitigate against poor wells in development and explain exploration failures. By developing a systematic set of templates for Drivers and their respective levers, learnings from other operators can be high-graded through the formulation of connectivity analogues with the goal of showing where changes in completion design may be more, or less applicable.
Hydraulic fracturing has been widely used for unconventional reservoirs, including organic-rich carbonate formations, for oil and gas production. During hydraulic fracturing, massive amounts of fracturing fluids are pumped to crack open the formation, and only a small percentage of the fluids are recovered during the flowback process. The negative effects of the remaining fluid on the formation, such as clay swelling and reduction of rock mechanical properties, have been reported in the literature. However, the effects of the fluids on source-rock properties—especially on microstructures, porosity, and permeability—are scarcely documented. In this study, microstructure and mineralogy changes induced in tight carbonate rocks by imbibed fluids and the corresponding changes in permeability and porosity are reported.
Two sets of tight organic-rich carbonate-source-rock samples were examined. One sample set was sourced from a Middle East field, and the other was an outcrop from Eagle Ford Shale that is considered to be similar to the one from the Middle East field in terms of mineralogy and organic content. Three fracturing fluids—2% potassium chloride (KCl), 0.5 gal/1,000 gal (gpt) slickwater, and synthetic seawater—were used to treat the thin section of the source-rock and core samples. Modern analytical techniques, such as scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), were used to investigate the source-rock morphology and mineralogy changes before and after the fluid treatment, at the micrometer scale. Permeability as a function of effective stress was quantified on core samples to investigate changes in flow properties caused by the fracturing-fluid treatments.
The SEM and EDS results before and after fracturing-fluid treatments on the source-rock samples showed the microstructural changes for all three fluids. For 2% KCl and slickwater fluid, reopening of some mineral-filled natural fractures was observed. The enlargement of the aperture for pre-existing microfractures was slightly more noticeable for samples treated with 2% KCl compared with slickwater at the micrometer scale. In one sample, dissolution of organic matter was captured in the slickwater-fluid-treated rock sample. Mineral precipitation of sodium chloride (NaCl) and generation of new microfractures were observed for samples treated with synthetic seawater. The formation of new microfractures and the dissolution of minerals could result in increases in both porosity and permeability, whereas the mineral deposition would result in permeability decrease. The overall increase in absolute gas permeability was quantified by the experimental measurements under different effective stress for the core-plug samples. This effect on absolute-gas-permeability increase might have an important implication for hydrocarbon recovery from unconventional reservoirs.
This study provides experimental evidence at different scales that aqueous-based fracturing fluid might potentially have a positive effect on gas production from organic-rich carbonate source rock by increasing absolute gas permeability through mineral dissolution and generation of new fractures or reopening of existing microfractures. This observation will be beneficial to the future use of freshwater-and seawater-based fluids in stimulating gas production from organic-rich carbonate formations.