Source
Publisher
Theme
Author
Concept Tag
File Type
This article, written by Special Publications Editor Adam Wilson, contains highlights of paper SPE 191437, “ACA Practical Considerations: When Is It Accurate and How Should It Be Used To Improve Reservoir Stimulation,” by O.A. Ishteiwy, SPE, M. Jaboob, and G. Turk, BP; S. Dwi-Kurniadi, SPE, Schlumberger; A. Al-Shueili, SPE, A. Al-Manji, and P. Smith, BP, prepared for the 2018 SPE International Hydraulic Fracturing Technology Conference and Exhibition, Muscat, Oman, 16–18 October. The paper has not been peer reviewed.
The use of diagnostic fracture injection tests (DFITs) for prefracture investigation has become routine in the oil field, particularly for understanding reservoir properties and subsequently optimizing hydraulic-fracture design. A key component of an effective DFIT is an after-closure analysis (ACA) to assess the transmissibility of the formation and allow for effective design. This paper describes a DFIT-analysis program and the suitability of the results from ACAs for use in hydraulic-fracture design.
Introduction
The Khazzan field is being developed currently and includes multiple gas-bearing formations. The primary development reservoir is the Barik sandstone, which is characterized by permeabilities on the order of 0.1 to 1 md. An additional reservoir under development is the Amin formation, which lies deeper than the Barik and is perhaps more unconventional in nature, with estimated permeabilities an order of magnitude lower than the Barik formation. Both reservoirs require hydraulic fracturing to produce at economically attractive rates and, as such, carry the same sort of challenges to reservoir understanding inherent to all unconventional plays. This was recognized in advance of the appraisal program, and an approach was taken to address these challenges in a more-holistic fashion, encompassing a full suite of data gathering, including surveillance and well testing.
One of the key tools used was DFIT along with associated ACA of the decline to determine reservoir properties. During the appraisal phase, significant rigor was aimed at ensuring high-quality data would be recorded and that an appropriate amount of time would be allocated to monitoring pressure declines to enable valid interpretations. This resulted in the ability to draw a good correlation between data gathered from the ACA operations and data collected from post-fracturing well-test data.
Methods and Process Stimulation and Testing Sequence. The approach taken to stimulate and test the wells in Khazzan was to use a dedicated well-test unit. The overall sequence was as follows:
The use of the Diagnostic Fracture Injection Test (DFIT) technique as a means of pre-frac investigation has become relatively routine in the oilfield, particularly to understand the reservoir properties and then subsequently optimize the hydraulic fracture design. A key component of an effective DFIT is the performance of an effective After Closure Analysis (ACA) to assess the transmissibility of the formation and thereby allow for effective design.
BP Oman is developing the Barik formation, within the Khazzan field, which is a low-permeability conventional tight-gas reservoir within Block 61 of the Sultanate of Oman. The reservoir is comprised of a series of tightly interbedded sandstones and shales, with substantial shale breaks between the principal sand lobes. During the Appraisal and Development well sequence to date, BP Oman have performed DFIT operations in over 50 vertical wells, within the Barik Formation. Each one of these wells was then subject to placement of a large (one million lb) hydraulic fracture treatment. Each treatment was then followed by a standard clean-up programme and when possible a PBU, with subsequent placement on production into the main gathering system.
This paper seeks to demonstrate that there is unambiguous evidence of a coherent correlation between the petro-physical Barik open-hole logs, the transmissibility value (as estimated from the ACA), the conventional Pressure Transient Analysis (PTA) as well as the long-term production behaviour. Additionally, the paper will investigate the key aspects of the actual DFIT execution, the data gathering and the analysis that can impact the quality of the correlation. The paper will go on to demonstrate the most efficient methods of achieving the most accurate assessment of the formation transmissibility; that is both indicative and subsequently helpful for the fracture design and post-fracture productivity prediction.
This paper successfully describes a 50 well, and growing, DFIT analysis programme and the suitability of the use of the results from the subsequently performed ACAs for forward planning and hydraulic fracture design. Providing a suite of useful and helpful insights, suggestions and recommendations; into how DFIT, for ACA, should be executed in the field; the paper adds an extensive case history to the industry database for future consideration.