Current Filters
Source
Geologic Time
Conference
Theme
Author
Concept Tag
Industry
Technology
File Type
Layer | Fill | Outline |
---|
Theme | Visible | Selectable | Appearance | Zoom Range (now: 0) |
---|
Fill | Stroke |
---|---|
Pei, Yanli (The University of Texas at Austin) | Yu, Wei (The University of Texas at Austin / Sim Tech LLC) | Sepehrnoori, Kamy (The University of Texas at Austin) | Gong, Yiwen (Sim Tech LLC / The Ohio State University) | Xie, Hongbin (Sim Tech LLC) | Wu, Kan (Texas A&M University)
The extensive depletion of the development target has triggered the demand for infill drilling in the upside target of multilayer unconventional reservoirs. To optimize the hydraulic fracturing design of newly drilled wells, we need to investigate the stress changes in the upside target induced by parent-well production. In this work, an integrated parent-child workflow is presented to model the spatial-temporal stress evolution and propose the optimal development strategy for the upside target using a data set from the Permian Basin. The stress dependence of matrix permeability and fracture conductivity is determined based on available experimental data and incorporated in our reservoir simulation with the aid of an embedded discrete fracture model (EDFM). With calibrated reservoir properties from history matching of an actual well in the development target (i.e., 3rd BS Sand), we run the finite element method (FEM) based geomechanics simulator to predict the 3D spatial-temporal evolution of the local principal stresses. A displacement discontinuity method (DDM) hydraulic fracture model is then applied to simulate the multi-cluster fracture propagation in the upside target (i.e., L2BSSh) with the updated heterogeneous stress field. Numerical results indicate that stress field redistribution associated with parent-well production not only occurs within the development target but also vertically propagates to the upside target. A smaller parent-child horizontal offset induces a severer deviation of child-fractures towards the parent wellbore, resulting in more substantial well interference and less desirable oil and gas production. The parent-child fracture overlapping ratio in our study is in 0.6 ~ 0.8 for the 400 ft horizontal offset and 0.2 ~ 0.5 for the 600 ft horizontal offset. Varying the parent-child vertical offset gives the same trend as we change the horizontal offset. But with a delayed infill time, placing child-well in different layers causes more significant variation in the ultimate recovery. Moreover, infill operations at an earlier time are less affected by parent-well depletion because of the more homogeneous stress state. The candidate locations to implement infill-wells are suggested in the end for different infill timing by co-simulation of the parent-child production. With the reservoir-geomechanics-fracture model, this work provides a general workflow to optimize the child-well completion in multilayer unconventional reservoirs. The conclusions drawn from this study are of guiding significance to the subsequent development in the Permian Basin.
Rosenhagen, Nicolas M. (Colorado School of Mines) | Nash, Steven D. (Anadarko Petroleum Corporation) | Dobbs, Walter C. (Anadarko Petroleum Corporation) | Tanner, Kevin V. (Anadarko Petroleum Corporation)
The volume of stimulation fluid injected during hydraulic fracturing is a key performance driver in the horizontal development of the Niobrara formation in the Denver-Julesburg (DJ) Basin, Colorado. Oil production per well generally increases with stimulation fluid volume. Often, operators normalize both production and fluid volume based on stimulated lateral length and investigate relationships using "per-ft" variables. However, data from well-based approaches commonly display such wide distributions that no useful relationships can be inferred. To improve data correlations, multivariate analysis normalizes for parameters such as thermal maturity, depth, depletion, proppant intensity, drawdown, geology and completion design. Although advancements in computing power have decreased cycle times for multivariate analysis, preparing a clean dataset for thousands of wells remains challenging. A proposed analytical method using publicly available data allows interpreters to see through the noise and find informative correlations.
Using a data set of over 5000 wells, we aggregate cumulative oil production and stimulation fluid volumes to a per-section basis then normalize by hydrocarbon pore volume (HCPV) per section. Dimensionless section-level Cumulative Oil versus Stimulation Fluid Plots ("Normalization" or "N-Plot") present data distributions sufficiently well-defined to provide an interpretation and design basis of well spacing and stimulation fluid volumes for multi-well development. When coupled with geologic characterization, the trends guide further refinement of development optimization and well performance predictions.
Two example applications using the N-Plot are introduced. The first involves construction of predictive production models and associated evaluation of alternative development scenarios with different combinations of well spacing and completion fluid intensity. The second involves "just-in-time" modification of fluid intensity for drilled but uncompleted wells (DUC's) to optimize cost-forward project economics in an evolving commodity price environment.
Johnson, Raymond L. (S.A. Holditch & Associates) | Dunn, Kevin P. (S.A. Holditch & Associates) | Bastian, Peter A. (S.A. Holditch & Associates) | Hopkins, Chris W. (S.A. Holditch & Associates) | Conway, Michael W. (Stim-Lab Inc.)
This paper was prepared for presentation at the 1998 SPE Annual Technical Conference and Exhibition held in New Orleans, Louisiana, 27-30 September 1998.