The SPE has split the former "Management & Information" technical discipline into two new technical discplines:
- Management
- Data Science & Engineering Analytics
SPE Disciplines
Geologic Time
Journal
Conference
Publisher
Date
Author
Concept Tag
Country
Genre
Geophysics
Industry
Oilfield Places
Technology
Source
File Type
The SPE has split the former "Management & Information" technical discipline into two new technical discplines:
Since 2015, the SPE has worked with i2k Connect on an Artificial Intelligence (AI) based system that combines Machine Learning (ML) with domain specific expert knowledge to derive precise, accurate and consistent information about the content in OnePetro, PetroWiki, SPE magazines and the website. The derived information is used across SPE systems to improve delivery of relevant information.
This research portal allows you to use the same information directly to search and analyze the full breadth of SPE content by source, discipline, location, timeframe, concept and more.
Mobile users: tap the icon at the top of the screen to show or hide the search box, and the icon to show or hide the filter menu.
Click on any page for help.
Layer | Fill | Outline |
---|
Theme | Visible | Selectable | Appearance | Zoom Range (now: 0) |
---|
Fill | Stroke |
---|---|
If a contest or a division is not held in your assigned region, you can request to present your paper in an assigned alternate region. Every region has only one alternate region. To make an alternate region paper request, or if the alternate region is not holding a contest, please contact spc@spe.org. COVID-19 Updates: Due to the COVID-19 outbreak and subsequent restrictions on travel, all Regional SPC competitions are aiming to run as virtual competitions. A guide on how this will be run can be found in the Student Paper Contest Video Conferencing Guide (pdf).
SPE provides shared expertise, resources, and life-long learning opportunities to fuel the success of our members and the future of the industry. SPE provides shared expertise, resources, and life-long learning opportunities to fuel the success of our members and the future of the industry. Log in to see events relevant to your location and specialty. SPE is here to help you on your career path. SPE has enabled me to have a fantastic career and make friends with amazing people all around the world.
Test Candidate Alert Due to COVID-19, some of the testing centers around the world closed temporarily and many are in the process of reopening. If you have registered for the SPE Certification Exam or plan to register, please visit the Kryterion Testing Center website to find out if your testing center is affected. How to become an SPE Certified Engineer? An undergraduate engineering degree in petroleum engineering or related science. SPE has partnered with Kryterion Global Testing Solutions to establish secure testing centers around the world, so you can take your certification exam at a facility that's convenient for you. Find a testing center near you.
Abstract The deep carbonate reservoir formation on this field has proven to be an extreme High-temperature (HT) environment for downhole equipment. While drilling the 5000 - 6500 ft 5-7/8" slim long laterals across this formation, very high bottom-hole circulating temperatures is encountered (310-340 degF) which exceeds the operating limitation for the downhole drilling/formation evaluation tools. This resulted in multiple temperature-related failures, unplanned trips and long non-productive-time. It became necessary to provide solution to reduce the BHCT-related failures. Performed offset-wells-analysis to identify the BHT regime across the entire-field, create a heat-map and correlate/compare actual formation-temperatures with the formation-temperature-gradient provided by the operator (1.4-1.8 degF/100-ft). Drilling reports and MWD/LWD/wireline logs were reviewed/analyzed. Reviewed tools-spec-sheets, discovered most of the tools had a maximum-temperature-rating of 300-302 degF and were run outside-technical-limits. Observed temperature-related-failures were predominant in very long slim-laterals, which indicated that some of the heat was generated by high flow rate/RPM and solids in the system. Tried drilling with low-RPM/FR, did not achieve meaningful-temperature-reduction. After detailed risk-assessment and analysis on other contributing factors in the drilling process, opted to incorporate mud-chiller into the surface circulating-system to cool-down the mud going into the well. Upon implementation of the mud chiller system, observed up to 40 degF reduction in surface temperature (i.e. temperature-difference between the mud entering/leaving mud chiller). This was achieved because the unit was set-up to process at least twice the rate that was pumped downhole. Also observed reduction in the bottom-hole circulating temperature to below 300 degF, thus ensuring the drilling environment met the tool specifications. The temperature-related tools failure got eliminated. On some of the previous wells, wireline logging tools have been damaged due to high encountered downhole temperature as circulation was not possible prior-to or during logging operation. The implementation of the mud-chiller system has made it possible for innovative logging thru-bit logging application to be implemented. This allows circulation of cool mud across the entire open hole prior to deployment of tools to perform logging operation. This has made it possible for same logging tool to be used for multiple jobs without fear of tool electronic-components failure die to exposure to extreme temperatures. The long non-productive time due to temperature-related tool failures got eliminated. The numerous stuck pipes events due to hole deterioration resulting from multiple round trips also got eliminated. Overall drilling operations became more efficient. The paper will describe the drilling challenges, the systematic approach implemented to arrive at optimized solution. It will show how good understanding of drilling challenges and tailored-solutions delivers great gains. The authors will show how this system was used to provide a true step-change in performance in this challenging environment.
Abstract This work presents experimental studies on a new tool concept to address casing-casing-annulus (CCA) pressure leak challenges in the drilling industry. The new method uses an intervention-type tool that allows for exiting the casing, cleaning cement behind, and injecting any required sealant to block fluid migration on the annular side. Addressing such CCA challenges is essential for increasing the production time and maintaining wellbore pressure integrity. A combination of 3D modeling and experimental studies is used to evaluate the feasibility of the new concept for addressing CCA fluid migration challenges. This study focuses on the development and evaluation of a tool that allows accessing and sufficiently cleaning cement in multiple CCAs. We have successfully tested a scaled tool. This tool can punch a small hole in a casing at a unique angle and clean cement behind it by drilling spirals on the annular side. The new method for accessing the annular side of the casing and cleaning cement behind it has been developed and successfully tested using scaled model rigs. Studies have involved an early proof of the concept in plastic and steel. We have also simulated cement with fluid communication channels behind the casing with a successful attempt of removing it. The experimental test results are being used to further develop a robust, downhole field-deployable tool and method that captures the essential features required to access and operate in CCA areas. The current study suggests that a significant section of cement can be removed by the proposed method: One small-diameter hole is drilled in the casing, and then a cement removing assembly is run in a spiral motion on the annular side of this casing. A suitable sealant can be injected in the created void in cement to stop potential fluid migration. This experimental study suggests that the CCA can be accessed and resealed with a minimum time and equipment if required. This CCA milling-injection system (patent pending) utilizes a novel, easily-deployable tool. This tool enables milling access into the annular side of designated casings, and enables cleaning the cement behind it. The new system only mills one hole in the casing limiting its damage and providing the ability to clean a significant section of the cement at the desired depth. This helps address potential CCA leaks, saves time and cost.
Guan, Xu (Exploration and Development Research Institute of PetroChina Southwest Oil & Gasfield Company, Chengdu, China) | Zhu, Deyu (Exploration and Development Research Institute of PetroChina Southwest Oil & Gasfield Company, Chengdu, China) | Tang, Qingsong (PetroChina Southwest Oil & Gasfield Company, Chengdu, China) | Wang, Xiaojuan (Exploration and Development Research Institute of PetroChina Southwest Oil & Gasfield Company, Chengdu, China) | Wang, Haixia (Exploration and Development Research Institute of PetroChina Southwest Oil & Gasfield Company, Chengdu, China) | Zhang, Shaomin (Exploration and Development Research Institute of PetroChina Southwest Oil & Gasfield Company, Chengdu, China) | Deng, Qingyuan (Exploration and Development Research Institute of PetroChina Southwest Oil & Gasfield Company, Chengdu, China) | Yu, Peng (Exploration and Development Research Institute of PetroChina Southwest Oil & Gasfield Company, Chengdu, China) | Yu, Kai (Exploration and Development Research Institute of PetroChina Southwest Oil & Gasfield Company, Chengdu, China) | Huang, Xingning (Downhole service company of Xibu Drilling Engineering Company Limited, Karamay, China) | Xu, Hanbing (CNPC, International HK LTD Abu Dhabi, Abu Dhabi, UAE)
Abstract In recent years, tight sandstone gas as one of the important types of unconventional resources, has been rapid explored and developed. There are large-scale tight sandstone gas production in Sichuan Basin, Ordos Basin, Bohai Bay Basin, Songliao Basin and other basins, and it has become a key part in the area of increasing gas reserves and production in China. Due to the influence of the reservoir characteristics, tight gas reservoirs have low porosity and permeability, and the tight gas can only be effectively developed by improving the conductivity around the wellbore. Therefore, it is required to perform hydraulic fracturing after the completion of horizontal well drilling to improve the permeability of reservoir. It can be seen that hydraulic fracturing is the core technology for efficient development of tight gas resources. The implementation of hydraulic fracturing scheme directly determines the horizontal well production and EUR. This paper describes the workflow of 3D geomechanical modeling, technical application for Well YQ 3-3-H4 reservoir stimulation treatment, and carries out hydraulic fracture propagation simulation research based on 3D geomechanical model. This paper also compares the micro-seismic data with the simulation results, and the comparison results show that the propagation model is consistent with the micro-seismic monitoring data, which verifies the accuracy of the model. This paper clarifies the distribution law of hydraulic fractures in the three-dimensional space of horizontal wells in YQ 3 block, and the research results can be used to provide guidance and suggestions for the optimization of fracturing design of horizontal wells in tight gas of Sichuan Basin.
Abstract This paper discusses the added value of a new approach to exiting an existing wellbore, where the normal practice forces the plug and abandonment (P&A) of the existing lateral before cutting the window into a new lateral, particularly when an off-bottom cemented (OBC) liner is required. The new approach includes the construction of a Technology Advancement of Multilaterals Level 4 (TAML 4) junction to maintain well integrity and the successful development of a re-entry window that allows access to both the existing and the new slim wells. Not only has this technique unlocked massive potential, but it has also led to an enhancement in the utility and reduction in capital expenditure (CAPEX). The successful Level 4 sidetrack and re-entry window deployment is directly related to the robust system design. The application developed includes an anchor with a guide and high-torque capability, a TAML Level 4 junction created in a shape that will lead to smooth, repeatable access in the future, and a customized re-entry window system to further maximize the well potential. The true value is in allowing access to both the existing and the newly drilled lateral without using a rig or decompleting the well. Such operations use tubing exit whipstock (TEW) and pressure isolation sleeves, both of which can be run and retrieved in a rigless manner. The rigless access has allowed the existing lateral to be used as an observation well. Using permanent downhole gauges (PDHGs) enables real-time monitoring of the pressure and temperature and periodic logging to evaluate the reservoir. The newly drilled lateral can be the primary producing lateral; rigless access equally helps recover the well in case of any production challenges. The newly designed multilateral is a game changer for both mature and new developments because it maximizes reservoir production and helps reduce CAPEX by requiring fewer wells to be drilled. The improved well integrity minimizes well workover operations, which creates cost savings. This paper discusses the following aspects:A successful Level 4 junction construction from a slim re-entry existing/mature well. Repeatable accessibility to the lateral and motherbore. Meeting the motherbore objective as required. Delivering an OBC lateral liner and maintaining the well integrity.
Zhu, Jun (Vertechs Energy Group) | Zhang, Wei (Vertechs Energy Group) | Zeng, Qijun (Vertechs Energy Group) | Liu, Zhenxing (Vertechs Energy Group) | Liu, Jiayi (PetroChina Southwest Oil & Gas Field Company) | Liu, Junchen (PetroChina Southwest Oil & Gas Field Company) | Zhang, Fengxia (PetroChina Southwest Oil & Gas Field Company) | He, Yu (PetroChina Southwest Oil & Gas Field Company) | Xia, Ruochen (PetroChina Southwest Oil & Gas Field Company)
Abstract In the past decade, the operators and service companies are seeking an integration solution which combines engineering and geology. Since our drilling wells are becoming much more challenging than ever before, it requires the office engineer not only understanding well construction knowledge but also need learn more about geology to help them address the unexpected scenarios may happen to the wells. Then a novel solution should be provided to help engineers understanding their wells better and easier in engineering and geology aspects. The digital twin technology is used to generate a suppositional subsurface world which contains downhole schematic and nearby formation characteristics. This world is described in 3D modelling engineers could read all the information they need after dealt with a unique algorithm engine. In this digital twin subsurface world, the engineering information like well trajectory, casing program, BHA (bottom hole assembly) status, are combined with geology data like formation lithology, layer distribution and coring samples. Both drilling or completion engineers and geologist could get an intuitive awareness of current downhole scenarios and discuss in a more efficient way. The system has been deployed in a major operator in China this year and received lot of valuable feedback from end user. First of all, the system brings solid benefits to operator's supervisors and engineers to help them relate the engineering challenges with according geology information, in this way the judgement and decision are made more reliable and efficiently, also the solution or proposal could be provided more targeted and available. Beyond, the geology information from nearby wells in digital twin modelling could also provide an intuitional navigation or guidance to under-constructed wells avoid any possible tough layers via adjusting drilling parameters. This digital twin system breaks the barrier between well construction engineers and geologists, revealing a fictive downhole world which is based on the knowledge and insight of our industry, providing the engineers necessary information to support their judgement and assumption at very first time when they meet downhole problems. For example, drilling engineers would pay extra attention to control the ROP (rate of penetration) while drilling ahead to fault layer at the first time it is displayed in digital twin system, which prevent potential downhole accident and avoid related NPT (non-production time). The integration of engineering and geology is a must-do task for operators and service companies to improve their performance and reduce downhole risks. Also, it provides an interdisciplinary information to end user for their better awareness and understanding of their downhole asset. Not only help to avoid some possible downhole risks but also benefit on preventing damage reservoir by optimizing the well construction parameters.