Peer Reviewed
Date
Journal
Conference
Publisher
Author
Concept Tag
File Type
In cold heavy oil production with sand (CHOPS) production, the two limiting physical mechanisms for sand are compact growth of the remolded zone as a cylindrical (or spherical or ellipsoidal) body or extension of an anastomosing piping channel system comprising a network of tubes ("wormholes"). These lead to different geometries in situ, although the impact on well productivity may not be quantifiable through measurements. Figure 1 shows a compact zone growth hypothesis for CHOPS. In compact growth, the ratio of the area of the fully yielded zone to the volume enclosed approaches a minimum because a cylindrical or elliptical shape is spatially more compact than a channel network. Discrete zonal boundaries do not really exist: a gradual phase-transition zone develops, although it may be treated mathematically as a thin front, just as in a melting alloy. The complex and diffuse boundary shape is approximated by a geometrically regular shape and a distinct liquefaction front. A circular 2D assumption is simplest for analysis because the radius of the zone and, hence, the pressure gradient can be scaled directly to sand-production volume with no additional assumptions.
In cold heavy oil production with sand (CHOPS) production, the two limiting physical mechanisms for sand are compact growth of the remolded zone as a cylindrical (or spherical or ellipsoidal) body or extension of an anastomosing piping channel system comprising a network of tubes ("wormholes"). These lead to different geometries in situ, although the impact on well productivity may not be quantifiable through measurements. Figure 1 shows a compact zone growth hypothesis for CHOPS. In compact growth, the ratio of the area of the fully yielded zone to the volume enclosed approaches a minimum because a cylindrical or elliptical shape is spatially more compact than a channel network. Discrete zonal boundaries do not really exist: a gradual phase-transition zone develops, although it may be treated mathematically as a thin front, just as in a melting alloy. The complex and diffuse boundary shape is approximated by a geometrically regular shape and a distinct liquefaction front. A circular 2D assumption is simplest for analysis because the radius of the zone and, hence, the pressure gradient can be scaled directly to sand-production volume with no additional assumptions.
When determining a slurry's characteristics and performance, these testing procedures are recommended: The methods of testing cement for downhole application are based on performance testing. Testing methods are usually performed according to API specifications, though specifically designed and engineered equipment or tests are also used. The choice of additives and testing criteria is dictated primarily by the specific parameters of the well to be cemented. Performance testing has proven to be the most effective in establishing how a slurry will behave under specific well conditions. There is no direct means of predicting cement performance from the properties of cement, and no technique has yet been established that would correlate cement composition and cement/additive interaction with performance.
Two forms of derivatized cellulose have been found useful in well-cementing applications. The usefulness of the two materials depends on their retardational character and thermal stability limits. This is commonly used at temperatures up to approximately 82 C (180 F) for fluid-loss control, and may be used at temperatures up to approximately 110 C (230 F) BHCT, depending on the co-additives used and slurry viscosity limitations. Above 110 C (230 F), HEC is not thermally stable. HEC is typically used at a concentration of 0.4 to 3.0% by weight of cement (BWOC), densities ranging from 16.0 to 11.0 lbm/gal, and temperatures ranging from 27 to 66 C (80 to 150 F) BHCT to achieve a fluid loss of less than 100 cm3 /30 min.
Bentonite is not typically used as the primary fluid-loss agent in normal-density slurries. In low-density slurries, where higher concentrations can be used, it may provide sufficient fluid-loss control (400 to 700 cm 3 /30 min) for safe placement in noncritical well applications. Fluid-loss control, obtained through the use of bentonite, is achieved by the reduction of filter-cake permeability by pore-throat bridging. Microsilica imparts a degree of fluid-loss control to cement slurries because of its small particle size of less than 5 microns. The small particles reduce the pore-throat volume within the cement matrix through a tighter packing arrangement, resulting in a reduction of filter-cake permeability.
Dispersants, also known as friction reducers, are used extensively in cement slurries to improve the rheological properties that relate to the flow behavior of the slurry. Dispersants are used primarily to lower the frictional pressures of cement slurries while they are being pumped into the well. Converting frictional pressure of a slurry, during pumping, reduces the pumping rate necessary to obtain turbulent flow for specific well conditions, reduces surface pumping pressures and horsepower required to pump the cement into the well, and reduces pressures exerted on weak formations, possibly preventing circulation losses. Another advantage of dispersants is that they provide slurries with high solids-to-water ratios that have good rheological properties. This factor has been used in designing high-density slurries up to approximately 17 lbm/gal without the need for a weighting additive.
Produced or fresh water being treated may have suspended solids, such as formation sand, rust from piping and vessels, and scale particles, or dissolved solids (various chemical ions). For most uses or disposal methods, these solids may need to be removed. It may be necessary to remove these solids to prevent wear in high-velocity areas, prevent solids from filling up vessels and piping and interfering with instruments, and comply with discharge restrictions on oil-coated solids. This page discusses appropriate removal technologies and handling of the removed material. Solid particles, because of their heavier density (compared to water) and net negative buoyant force, will settle to the bottom with a terminal velocity that can be derived from Stokes' law, as shown in Eq. 1. This equation applies strictly to creeping flow regimes in which the Reynolds number is less than unity; this is mainly concerned with spheres of very small diameter surrounded by a liquid. For very small particles, the inertial forces are much less than the viscous forces because of the low particle mass, and the particle does not enter into a turbulent settling regime. Most sedimentation basins are rectangular flumes with length-to-width ratios of 4:1 or greater to limit crossflow.
Produced or fresh water being treated may have suspended solids, such as formation sand, rust from piping and vessels, and scale particles, or dissolved solids (various chemical ions). For most uses or disposal methods, these solids may need to be removed. This page discusses appropriate removal technologies and handling of the removed material.
Produced or fresh water being treated may have suspended solids, such as formation sand, rust from piping and vessels, and scale particles, or dissolved solids (various chemical ions). For most uses or disposal methods, these solids may need to be removed. It may be necessary to remove these solids to prevent wear in high-velocity areas, prevent solids from filling up vessels and piping and interfering with instruments, and comply with discharge restrictions on oil-coated solids. This page discusses appropriate removal technologies and handling of the removed material. This equation applies strictly to creeping flow regimes in which the Reynolds number is less than unity; this is mainly concerned with spheres of very small diameter surrounded by a liquid. For very small particles, the inertial forces are much less than the viscous forces because of the low particle mass, and the particle does not enter into a turbulent settling regime. Most sedimentation basins are rectangular flumes with length-to-width ratios of 4:1 or greater to limit crossflow.
In many operations worldwide, surface waters are injected into producing formations to enhance oil recovery. The types of surface waters used range from seawater (salt water) to lake water (brackish) to river water (fresh water). Surface water must be treated to remove undesirable components before injection. Treatment of surface water for injection requires a specially designed system made up of various components to remove or control any contaminants in the water. The system is engineered to perform the required treatment in the most cost-effective and environmentally sensitive manner. A typical system is shown in Figure 1. Commonly used methods for removal or control of these contaminants are discussed in this section.