Implication of Turbulent Flow Induced by Gas Lift on Strontium Sulphate Scale Formation and Control Within Production Tubing

Fyfe, Andrew (Scaled Solutions) | Nichols, David (Scaled Solutions) | Jordan, Myles (ChampionX)

OnePetro 

Abstract Sulphate scale can be predicted from thermodynamic models and over recent years better kinetics data has improved the prediction for field conditions. However, these models have not been able to predict the observed deposits where flow disruptions occur such as chokes, gas lift and safety valves. In recent years it has been recognised that the turbulence found at these locations increases the likelihood of scale formation and experiments have been able to demonstrate that with increased turbulence there is an increase in the mass of scale observed and an increased concentration of scale inhibitor is required to prevent its formation. In this paper a field case is investigated where strontium sulphate was observed in a location downstream of a gas lift valve. Laboratory tests were conducted to confirm whether the expected scaling was observed in a low shear flow loop and also to investigate whether the location of the scale changed when additional turbulence (gas injection) was introduced to the system. The flowrate was chosen so that the shear stress generated on the test piece was approximately 1-2 Pa, similar to the value expected in typical field pipe flow. At the end of the test, the scale adhered to each of the five sections of the test piece pipe work was analysed separately to give data on both the mass and location of scale. A second test was also carried out to investigate the effect shear and turbulence induced by gas lift had on scale formation by modifying the test piece to introduce a flow of gas into the system. The test method was then used to evaluate a scale inhibitor and assess whether its performance was affected by the different flow regimes. The introduction of the ‘gas lift’ had a significant effect on the location of scale. Instead of being spread evenly throughout the test piece, the majority of the scale deposited upstream of the gas injection point. This is likely due to the induced turbulence and expansion in the tubing diameter at the T-piece increasing the residence time and thereby enhancing scale growth. A significant difference in scale location was also observed when the inhibitor dose was too low to prevent deposition and a higher dose was required to achieve complete inhibition in the ‘gas lift’ system. The findings from this study have significant impact on the design of test methods of evaluating scale risk in low saturation ratio brines and the screening methods for scale inhibitor for field application that should be utilised to develop suitable chemicals that perform better under higher shear conditions.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found